AN ABSTRACT MEASURE DIFFERENTIAL EQUATION

R. R SHARMA

Abstract

An abstract measure differential equation is introduced as a generalization of ordinary differential equations and measure differential equations. The existence and extension of solutions of this equation are considered.

Introduction. This paper is an attempt towards the development of the theory of differential equations of the form

$$
d \lambda / d \mu=f\left(x, \lambda\left(\bar{S}_{x}\right)\right)
$$

where (X, \mathscr{M}, μ) is a measure space, \bar{S}_{x} is a certain measurable set for each $x \in X$ and $d \lambda / d \mu$ denotes the Radon-Nikodym derivative of a complex measure λ (on the measurable space (X, \mathscr{M})) with respect to μ. Such equations include, as shown in $\S 3$, as special cases, ordinary differential equations and "measure differential equations" (as they are termed in [1], [4], [5]) of the form

$$
D y=f(x, y(x)) D g
$$

where $D g$ is the distributional derivative of the right continuous real function g of bounded variation. In this paper existence and extension of solutions are treated.

For a measurable space $(X, \mathscr{M}), \mathrm{ca}(X, \mathscr{M})$ will denote, as in Dunford and Schwartz [2, p. 240], the space of all countably additive scalar (real or complex) functions (briefly, real measures or complex measures) on \mathscr{M}. (Note that real measures form a subclass of the complex ones, while positive measures do not do so since they include.∞ as an admissible value.) $\mathrm{ca}(X, \mathscr{M})$ is a Banach space where norm $\|\lambda\|$ is the total variation of λ on X (see Dunford and Schwartz [2, p. 161]). The total variation measure of a measure λ will be denoted by $|\lambda|$.

1. Existence and uniqueness of solutions. Let X be a linear space over the field \mathscr{F} where \mathscr{F} is the set \boldsymbol{R} of real numbers or the set \boldsymbol{C} of complex

Received by the editors July 12, 1971.
AMS 1970 subject classifications. Primary 34G05; Secondary 46G99.
Key words and phrases. Ordinary differential equations, measure differential equations, complex measure, Radon-Nikodym derivative, function of bounded variation, distributional derivative, total variation measure, principle of contraction mapping, Borel measure, Lebesgue-Stieltjes measure.
numbers. For each $x \in X$, define

$$
S_{x}=\{\alpha x:-\infty<\alpha<1\}, \quad \bar{S}_{x}=\{\alpha x:-\infty<\alpha \leqq 1\} \quad \text { if } \mathscr{F}=\boldsymbol{R} ;
$$

and

$$
S_{x}=\{\alpha x: 0<|\alpha|<1\}, \quad \bar{S}_{x}=\{\alpha x: 0 \leqq|\alpha| \leqq 1\} \quad \text { if } \mathscr{F}=C .
$$

Let \mathscr{M} be a σ-algebra in X containing the sets \bar{S}_{x} for all $x \in X$. Let μ be a positive σ-finite measure or a complex measure on \mathscr{M}. Let f be a scalar function defined on $S_{\xi} \times \Omega_{a}$ where $\xi \in X$ and

$$
\Omega_{a}=\{\alpha:|\alpha|<a\} .
$$

Assume that $f\left(x, \lambda\left(\bar{S}_{x}\right)\right)$ is μ-integrable on S_{ξ} for each $\lambda \in \operatorname{ca}\left(S_{\xi}, \mathscr{M}_{\xi}\right)$ where

$$
\mathscr{M}_{\xi}=\left\{E \in \mathscr{M}: E \subset S_{\xi}\right\} .
$$

Consider the equation

$$
\begin{equation*}
d \lambda / d \mu=f\left(x, \lambda\left(\bar{S}_{x}\right)\right) \tag{*}
\end{equation*}
$$

where $d \lambda / d \mu$ denotes the Radon-Nikodym derivative of λ with respect to μ.
Definition 1. Let $\alpha_{0} \in \Omega_{a}, x_{0} \in S_{\xi}, S_{x_{0}} \subset X_{0} \in \mathscr{M}_{\xi}$ and let \mathscr{M}_{0} be the smallest σ-algebra in X_{0} containing $\bar{S}_{x_{0}}-S_{x_{0}}$ and the sets S_{x} for $x \in X_{0}-S_{x_{0}}$ (obviously $\mathscr{M}_{0} \subset \mathscr{M}_{\xi}$). A measure $\lambda \in \operatorname{ca}\left(X_{0}, \mathscr{M}_{0}\right)$ will be called a solution of (*) on X_{0} with initial data $\left[\bar{S}_{x_{0}}, \alpha_{0}\right.$] if
(i) $\lambda\left(\bar{S}_{x_{0}}\right)=\alpha_{0}$,
(ii) $\lambda(E) \in \Omega_{a}$ for $E \in \mathscr{M}_{0}$,
(iii) $\lambda \ll \mu_{0}$ on $X_{0}-S_{x_{0}}$ where μ_{0} is the restriction of μ to \mathscr{M}_{0} (i.e. $\mu_{0}(E)=0$ implies $\lambda(E)=0$ for $\left.E \subset X_{0}-S_{x_{0}}, E \in \mathscr{M}_{0}\right)$,
(iv) λ satisfies (${ }^{*}$) a.e. $\left[\mu_{0}\right]$ on $X_{0}-S_{x_{0}}$.

The solution λ on X_{0} with initial data [$\bar{S}_{x_{0}}, \alpha_{0}$] will be denoted, for the sake of convenience, by $\lambda\left[X_{0} ; \bar{S}_{x_{0}}, \alpha_{0}\right]$. Clearly the conditions (iii) and (iv) in the above definition are equivalent to

$$
\lambda(E)=\int_{E} f\left(x, \lambda\left(\bar{S}_{x}\right)\right) d \mu_{0} \quad \text { for } E \subset X_{0}-S_{x_{0}}\left(E \in \mathscr{M}_{0}\right) .
$$

Theorem 1. Let $\alpha_{0} \in \Omega_{a}$ and $x_{0} \in S_{\xi}$. There exists a unique solution $\lambda_{0}=$ $\lambda_{0}\left[S_{x_{1}} ; \bar{S}_{x_{0}}, \alpha_{0}\right]$ of $\left({ }^{*}\right)$ for some $x_{1} \in S_{\xi}-S_{x_{0}}$ if the following conditions are satisfied:
(i) $|\mu|\left(\bar{S}_{x_{0}}-S_{x_{0}}\right)=0$;
(ii) there exists a μ-integrable function w on S_{ξ} such that

$$
|f(x, \alpha)| \leqq w(x)
$$

uniformly in $\alpha \in \Omega_{a}$;
(iii) f satisfies a Lipschitz condition in α; i.e., given a set $S_{x_{1}} \subset S_{\xi}$ there
exists a constant $L=L\left(x_{1}\right)$ such that

$$
\left|f\left(x, \alpha_{1}\right)-f\left(x, \alpha_{2}\right)\right| \leqq L\left|\alpha_{1}-\alpha_{2}\right|
$$

for all $\left(x, \alpha_{1}\right),\left(x, \alpha_{2}\right) \in S_{x_{1}} \times \Omega_{a}$.
Proof. Let r_{n} be a sequence of real numbers such that $r_{n} \downarrow 1$ and $S_{r_{1} x_{0}} \supset S_{r_{2} x_{0}} \supset S_{r_{3} x_{0}} \supset \cdots \supset S_{x_{0}}$. Then

$$
\bigcap_{n=1}^{\infty}\left(S_{r_{n} x_{0}}-S_{x_{0}}\right)=\varnothing,
$$

and therefore

$$
|\mu|\left(S_{r_{n} x_{0}}-\bar{S}_{x_{0}}\right) \rightarrow 0 .
$$

We can therefore choose a real number r such that

$$
\begin{gather*}
\bar{S}_{x_{0}} \subset S_{r x_{0}}, \tag{1.1}\\
\int_{S_{r x_{0}}-\bar{x}_{x_{0}}} w(x) d|\mu|<a-\left|\alpha_{0}\right| \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
L|\mu|\left(S_{r x_{0}}-S_{x_{0}}\right)<1, \tag{1.3}
\end{equation*}
$$

where L is a Lipschitz constant for f on $S_{r x_{0}} \times \Omega_{a}$. It follows from condition (i) and (1.3) that

$$
\begin{equation*}
L|\mu|\left(S_{r x_{0}}-S_{x_{0}}\right)<1 \tag{1.4}
\end{equation*}
$$

Consider the space $\mathrm{ca}\left(S_{r x_{0}}, \mathscr{M}_{0}\right)$ where \mathscr{M}_{0} is the smallest σ-algebra containing $S_{x_{0}}-S_{x_{0}}$ and all the sets of the form S_{x} for $x \in S_{r x_{0}}-S_{x_{0}}$. Let Λ be the collection of all $\lambda \in \operatorname{ca}\left(S_{r x_{0}}, \mathscr{M}_{0}\right)$ with the properties:

$$
\begin{equation*}
\lambda\left(S_{x_{0}}\right)=\alpha_{0} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\lambda\| \leqq k \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\left|\alpha_{0}\right|+\int_{S_{r x_{0}}-S_{x_{0}}} w(x) d|\mu|<a, \tag{1.7}
\end{equation*}
$$

by (1.2) and condition (i). Clearly Λ is a closed, nonempty subset of $\mathrm{ca}\left(S_{r x_{0}}, \mathscr{M}_{0}\right)$ and is therefore a complete metric space. For each $\lambda \in \Lambda$, we have

$$
\begin{equation*}
|\lambda(E)| \leqq|\lambda|(E) \leqq\|\lambda\| \leqq k<a \quad \text { for } E \in \mathscr{M}_{0} . \tag{1.8}
\end{equation*}
$$

Let T be the mapping defined on Λ by

$$
\begin{aligned}
(T \lambda)(E) & =\alpha_{0} \text { for } E=\bar{S}_{x_{0}} \\
& =\int_{E} f\left(x, \lambda\left(\bar{S}_{x}\right)\right) d \mu \quad \text { for } E \subset S_{r x_{0}}-S_{x_{0}} \quad\left(E \in \mathscr{M}_{0}\right) .
\end{aligned}
$$

Then $T \lambda \in \operatorname{ca}\left(S_{r x_{0}}, \mathscr{M}_{0}\right)$, and

$$
\begin{aligned}
\|T \lambda\| & =\left|\alpha_{0}\right|+\int_{S_{r x_{0}}-S_{x_{0}}}\left|f\left(x, \lambda\left(\bar{S}_{x}\right)\right)\right| d|\mu| \\
& \leqq\left|\alpha_{0}\right|+\int_{S_{r x_{0}}-S_{x_{0}}} w(x) d|\mu| \quad \text { by condition (ii), } \\
& =k
\end{aligned}
$$

Therefore, $T \lambda \in \Lambda$. T thus maps Λ into itself. Furthermore, if $\lambda_{1}, \lambda_{2} \in \Lambda$,

$$
\begin{aligned}
& \begin{aligned}
\left(T \lambda_{1}-T \lambda_{2}\right)(E) & =0 \text { for } E=S_{x_{0}}, \\
& =\int_{E}\left[f\left(x, \lambda_{1}\left(\bar{S}_{x}\right)\right)-f\left(x, \lambda_{2}\left(\bar{S}_{x}\right)\right)\right] d \mu
\end{aligned} \\
& \text { Therefore, }
\end{aligned}
$$

$$
\begin{align*}
\left\|T \lambda_{1}-T \lambda_{2}\right\| & =\int_{S_{r x_{0}}-S_{x_{0}}}\left|f\left(x, \lambda_{1}\left(\bar{S}_{x}\right)\right)-f\left(x, \lambda_{2}\left(\bar{S}_{x}\right)\right)\right| d|\mu| \\
& \leqq L \int_{S_{r x_{0}}-S_{x_{0}}}\left|\lambda_{1}\left(S_{x}\right)-\lambda_{2}\left(S_{x}\right)\right| d|\mu| \tag{1.9}\\
& \leqq L|\mu|\left(S_{r x_{0}}-S_{x_{0}}\right)\left\|\lambda_{1}-\lambda_{2}\right\|
\end{align*}
$$

It follows from (1.4) and (1.9) that T is a contraction. Hence by the principle of contraction mapping, T has a unique fixed point λ_{0}. Also, $\lambda_{0}(E) \in \Omega_{a}$ by (1.8). λ_{0} is then the solution of (${ }^{*}$) on $S_{r x_{0}}$ with initial data [$\bar{S}_{x_{0}}, \alpha_{0}$]. This completes the proof of Theorem 1 .
2. Extension of solution. Let f be defined on $X \times \mathscr{F}$ and let the conditions of Theorem 1 be satisfied with S_{ξ} and Ω_{a} replaced by X and \mathscr{F} respectively. Theorem 1 yields a solution $\lambda_{0}\left[X_{0} ; S_{x_{0}}, \alpha_{0}\right]$ where $\lambda_{0} \in$ $\mathrm{ca}\left(X_{0}, \mathscr{M}_{0}\right), X_{0} \supset S_{x_{0}}$ and $\lambda_{0}\left(\bar{S}_{x_{0}}\right)=\alpha_{0}$. Let $x_{1} \in X_{0}-S_{x_{0}}$ be such that $|\mu|\left(S_{x_{1}}-S_{x_{1}}\right)=0$. There is a similar solution $\lambda_{1}\left[X_{1} ; S_{x_{1}}, \alpha_{1}\right]$ where $\lambda_{1} \in \operatorname{ca}\left(X_{1}, \mathscr{M}_{1}\right), X_{1} \supset X_{0}$ and $\lambda_{1}\left(\bar{S}_{x_{1}}\right)=\alpha_{1}$. Here \mathscr{M}_{0} is the smallest σ-algebra containing $\bar{S}_{x_{0}}-S_{x_{0}}$ and sets of the form \bar{S}_{x} for $x \in X_{0}-S_{x_{0}}$ and \mathscr{M}_{1} is the smallest σ-algebra containing $\bar{S}_{x_{1}}-S_{x_{1}}$ and sets of the form \bar{S}_{x} for $x \in X_{1}-S_{x_{1}}$. It follows from the uniqueness property that $\lambda_{0}(E)=\lambda_{1}(E)$ for $E \in \mathscr{M}_{0} \cap \mathscr{M}_{1}$. Let \mathscr{M} be the smallest σ-algebra containing the members of
\mathscr{M}_{0} and \mathscr{M}_{1}. Let $\lambda \in \mathrm{ca}\left(X_{1}, \mathscr{M}\right)$ be such that

$$
\begin{aligned}
\lambda(E) & =\lambda_{0}(E) \quad \text { for } E \in \mathscr{M}_{0} \\
& =\lambda_{1}(E) \quad \text { for } E \in \mathscr{M}_{1} .
\end{aligned}
$$

Then λ is a solution of $\left({ }^{*}\right)$ on the set X_{1} such that $\lambda\left(\bar{S}_{x_{0}}\right)=\alpha_{0}$. We shall call λ the continuation of λ_{0} to X_{1}. We thus extend the solution λ_{0} to X_{1}. By repeating this process we arrive at a maximal set over which λ_{0} is defined.
3. Special cases. (A) If $X=\boldsymbol{R}, \mathscr{F}=\boldsymbol{R}$ and $\mu=$ the Lebesgue measure m on \boldsymbol{R}, the equation $\left(^{*}\right)$ reduces to the equation

$$
\begin{equation*}
d \lambda / d m=f(x, \lambda((-\infty, x])) \tag{3.1}
\end{equation*}
$$

which can be shown to be equivalent to the ordinary differential equation

$$
\begin{equation*}
d y / d x=f(x, y(x)) \tag{3.2}
\end{equation*}
$$

More precisely, we shall prove the following:
Theorem 2(A). To each solution y of (3.2) with initial condition $y\left(x_{0}\right)=$ α_{0}, there corresponds a solution λ of (3.1) such that $\lambda\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}$, and vice versa.

Proof. Let y_{0} be a solution of (3.2) on $\left[x_{0}, x_{1}\right]$ with initial condition $y_{0}\left(x_{0}\right)=\alpha_{0}$. Define

$$
\begin{array}{rlrl}
y_{1}(x) & =0 & & \text { for } x \leqq x_{0} \\
& =y_{0}(x)-\alpha_{0} & & \text { for } x_{0}<x<x_{1} \\
& =y_{0}\left(x_{1}\right)-\alpha_{0} & \text { for } x \geqq x_{1}
\end{array}
$$

Then $y_{1} \in$ NBV where NBV is the class of left-continuous functions φ of bounded variation such that $\varphi(x) \rightarrow 0$ as $x \rightarrow-\infty$, and hence there exists, by Rudin [3, Theorem 8.14(b)], a unique complex Borel measure λ_{1} such that

$$
\begin{equation*}
y_{1}(x)=\lambda_{1}((-\infty, x)) . \tag{3.3}
\end{equation*}
$$

Since y_{1} is absolutely continuous, $\lambda_{1} \ll m$ (by Rudin [3, Theorem 8.16]). Let \mathscr{M}_{0} be the smallest σ-algebra containing $\left\{x_{0}\right\}$ and the sets $(-\infty, x]$ for $x_{0} \leqq x \leqq x_{1}$, and define λ_{0} on \mathscr{M}_{0} by

$$
\lambda_{0}\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}, \quad \lambda_{0}(E)=\lambda_{1}(E) \quad \text { for } E \subset\left[x_{0}, x_{1}\right]\left(E \in \mathscr{M}_{0}\right)
$$

It is easy to see that $\lambda_{0} \in \mathrm{ca}\left(\left[x_{0}, x_{1}\right], \mathscr{M}_{0}\right)$ and that $\lambda_{0} \ll m_{0}$ where m_{0} is the restriction of m to \mathscr{M}_{0}. Furthermore, for $x \in\left[x_{0}, x_{1}\right]$, we have

$$
\begin{align*}
y_{0}(x) & =y_{1}(x)+\alpha_{0}=\lambda_{1}((-\infty, x))+\alpha_{0} \\
& =\lambda_{0}\left(\left(x_{0}, x\right)\right)+\lambda_{0}\left(\left(-\infty, x_{0}\right]\right)=\lambda_{0}((-\infty, x)) \tag{3.4}\\
& =\lambda_{0}((-\infty, x]), \quad \text { since } \lambda_{0} \ll m_{0} \text { and } m_{0}\{x\}=0 .
\end{align*}
$$

Since y_{0} is absolutely continuous, being a solution of (3.2) on [$\left.x_{0}, x_{1}\right]$, $y_{0}^{\prime}\left(\equiv d y_{0} / d x\right)$ is defined a.e. $[m]$ on $\left[x_{0}, x_{1}\right]$ and

$$
y_{0}(x)=\alpha_{0}+\int_{x_{0}}^{x} y_{0}^{\prime}(t) d t \quad \text { for } x \in\left[x_{0}, x_{1}\right]
$$

Therefore,

$$
\lambda_{0}\left(\left[x_{0}, x\right]\right)=\int_{\left[x_{0}, x\right]} y_{0}^{\prime}(t) d t
$$

Thus,

$$
\begin{equation*}
y_{0}^{\prime}(x)=d \lambda_{0} / d m_{0} \quad \text { a.e. }[m] . \tag{3.5}
\end{equation*}
$$

Now (3.4) and (3.5) show that λ_{0} is a solution of $\left({ }^{*}\right)$ on ($-\infty, x_{1}$] satisfying the initial condition $\lambda_{0}\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}$.

Conversely, let λ_{0} be a solution of (3.1) on ($-\infty, x_{1}$] with initial condition $\lambda_{0}\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}$. Let λ_{1} be a complex Borel measure on \boldsymbol{R} such that

$$
\begin{array}{rlrl}
\lambda_{1}((-\infty, x)) & =0 & & \text { for } x \leqq x_{0} \\
& =\lambda_{0}((-\infty, x])-\alpha_{0} & & \text { for } x_{0}<x<x_{1} \\
& =\lambda_{0}\left(\left(-\infty, x_{1}\right]\right) & & \text { for } x>x_{1} \\
\lambda_{1}(E)=\lambda_{0}(E) & \text { for measurable sets } E \subset\left[x_{0}, x_{1}\right] .
\end{array}
$$

Since $\lambda_{0} \ll m_{0}$ on $\left[x_{0}, x_{1}\right], \lambda_{0}$ being a solution of (3.1), it follows that $\lambda_{1} \ll m$. Define y_{1} by (3.3). By Rudin [3, Theorem 8.14(a) and Theorem 8.16], y_{1} is absolutely continuous. Define

$$
y_{0}(x)=y_{1}(x)+\alpha_{0} \quad \text { for } x \in\left[x_{0}, x_{1}\right] .
$$

Then y_{0} is absolutely continuous and

$$
y_{0}(x)=\lambda_{0}((-\infty, x]) \quad \text { for } x \in\left[x_{0}, x_{1}\right] .
$$

Also, since

$$
\lambda_{0}\left(\left(x_{0}, x\right]\right)=\int_{\left(x_{0}, x\right]} \frac{d \lambda_{0}}{d m_{0}}(t) d t, \quad x \in\left(x_{0}, x_{1}\right],
$$

we have

$$
y_{0}(x)=\alpha_{0}+\int_{x_{0}}^{x} \frac{d \lambda_{0}}{d m_{0}}(t) d t
$$

Therefore,

$$
\frac{d \lambda_{0}}{d m}(t)=y_{0}^{\prime}(t) \quad \text { a.e. }[m] \text { on }\left[x_{0}, x_{1}\right]
$$

Thus, y_{0} is a solution of (3.2) on $\left[x_{0}, x_{1}\right]$ satisfying $y_{0}\left(x_{0}\right)=\alpha_{0}$. This completes the proof of Theorem 2(A).

Remark. In the special case considered above Theorem 1 reduces to a well-known local existence and uniqueness theorem for ordinary differential equations.
(B) Let $X=\boldsymbol{R}, \mathscr{F}=\boldsymbol{R}$ and $\mu=\mu_{g}$ where μ_{g} is the Lebesgue-Stieltjes measure induced by a right continuous function g of bounded variation. In this case the equation $\left({ }^{*}\right)$ takes the form

$$
\begin{equation*}
d \lambda / d \mu_{g}=f(x, \lambda((-\infty, x])) \tag{3.6}
\end{equation*}
$$

Consider the equation

$$
\begin{equation*}
D y=f(x, y(x)) D g \tag{3.7}
\end{equation*}
$$

where $D g$ denotes the distributional derivative of g. The equation (3.7) is in fact equivalent (see [1], and also [4], [5]) to

$$
\begin{equation*}
y(x)=y\left(x_{0}\right)+\int_{\left(x_{0}, x\right]} f(s, y(s)) d g . \tag{3.8}
\end{equation*}
$$

By a solution y of (3.7) with initial condition $y\left(x_{0}\right)=\alpha_{0}$ is meant a right continuous function y of bounded variation such that y satisfies (3.8) and and $y\left(x_{0}\right)=\alpha_{0}$.

We shall prove the following:
Theorem 2(B). To each solution y of (3.7) with initial condition $y\left(x_{0}\right)=$ α_{0}, there corresponds a solution λ of (3.6) such that $\lambda\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}$, and vice versa.

Proof. Let y_{0} be a solution of (3.7) on [x_{0}, x_{1}] with initial condition $y_{0}\left(x_{0}\right)=\alpha_{0}$. Extend y_{0} on $\left(-\infty, x_{0}\right)$ by defining $y_{0}(x)=0$ for $x \in\left(-\infty, x_{0}\right)$. Let \mathscr{M}_{0} be the σ-algebra containing $\left\{x_{0}\right\}$ and the intervals $(-\infty, x]$ for $x \in\left[x_{0}, x_{1}\right]$. Let $\lambda_{y_{0}}$ be the restriction to \mathscr{M}_{0} of the Lebesgue-Stieltjes measure on $\left(-\infty, x_{1}\right]$ induced by y_{0}. Then

$$
\begin{align*}
\lambda_{y_{0}}\left(\left(x^{\prime}, x^{\prime \prime}\right]\right) & =y_{0}\left(x^{\prime \prime}\right)-y_{0}\left(x^{\prime}\right), & & x_{0} \leqq x^{\prime}<x^{\prime \prime} \leqq x_{1} ; \tag{3.9}\\
\lambda_{y_{0}}((-\infty, x]) & =y_{0}(x), & & x \in\left[x_{0}, x_{1}\right] .
\end{align*}
$$

From (3.8) and (3.9), we obtain

$$
\lambda_{y_{0}}\left(\left(x^{\prime}, x^{\prime \prime}\right]\right)=\int_{\left(x^{\prime}, x^{\prime \prime}\right]} f\left(x, \lambda_{y_{0}}((-\infty, x])\right) d g
$$

and

$$
\lambda_{y_{0}}\left(\left(-\infty, x_{0}\right]\right)=y_{0}\left(x_{0}\right)=\alpha_{0}
$$

which shows that $\lambda_{y_{0}}$ is a solution of (3.6) with initial condition

$$
\lambda_{y_{0}}\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0} .
$$

Conversely, let λ_{0} be a solution of (3.6) on $(-\infty, \beta]$ with initial condition $\lambda_{y_{0}}\left(\left(-\infty, x_{0}\right]\right)=\alpha_{0}$. Define $y_{0}(x)=\lambda_{0}((-\infty, x])$ for $x \in\left[x_{0}, \beta\right]$. Then

$$
y_{0}(x)-y_{0}\left(x_{0}\right)=\int_{\left(x_{0}, x\right]} f\left(s, y_{0}(s)\right) d g \quad \text { and } \quad y_{0}\left(x_{0}\right)=\alpha_{0} .
$$

If $x_{1}>x_{2}>\cdots>x_{n} \rightarrow x$, then $y_{0}\left(x_{n}\right) \rightarrow y_{0}(x)$, since

$$
(-\infty, x]=\bigcap_{n=1}^{\infty}\left(-\infty, x_{n}\right] .
$$

Thus y_{0} is right continuous on $\left[x_{0}, \beta\right]$. If $x_{0}<x_{1}<\cdots<x_{n}=\beta$, then

$$
\sum_{i=1}^{n}\left|y_{0}\left(x_{i}\right)-y_{0}\left(x_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\lambda_{0}\left(\left(x_{i-1}, x_{i}\right]\right)\right| \leqq\left|\lambda_{0}\right|((-\infty, \beta))
$$

so that

$$
v\left(y_{0},\left[x_{0}, \beta\right]\right) \leqq\left|\lambda_{0}\right|((-\infty, \beta))
$$

where $v\left(y_{0},\left[x_{0}, \beta\right]\right)$ denotes the total variation of y_{0} on $\left[x_{0}, \beta\right]$. Since λ_{0} is of bounded variation, the last inequality shows that y_{0} is a function of bounded variation on $\left[x_{0}, \beta\right]$. Thus y_{0} is a solution of (3.9) on $\left[x_{0}, x_{1}\right]$ with initial condition $y_{0}\left(x_{0}\right)=\alpha_{0}$. This completes the proof of Theorem 2(B).

References

1. P. C. Das and R. R. Sharma, On optimal controls for measure delay-differential equations, SIAM J. Control 9 (1971), 43-61.
2. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 \#8302.
3. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 \#1420.
4. W. W. Schmaedeke, Optimal control theory for nonlinear vector differential equations containing measures, SIAM J. Control 3 (1965), 231-280. MR 32 \#7288.
5. R. R. Sharma and P. C. Das, Existence and stability of measure differential equations, Czechoslovak Math. J. (to appear).

Department of Mathematics, Regional Institute of Technology, Jamshedpur, India

