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AN ABSTRACT MEASURE  DIFFERENTIAL EQUATION

R.  R   SHARMA

Abstract. An abstract measure differential equation is intro-

duced as a generalization of ordinary differential equations and

measure differential equations. The existence and extension of

solutions of this equation are considered.

Introduction.   This paper is an attempt towards the development of the

theory of differential equations of the form

dXldft-f(pc,X(SJ)

where (X, JÍ, ¡j) is a measure space, Sx is a certain measurable set for

each xeÄ'and dXjdp, denotes the Radon-Nikodym derivative of a complex

measure A (on the measurable space (X, JÍ)) with respect to ¡x. Such

equations include, as shown in §3, as special cases, ordinary differential

equations and "measure differential equations" (as they are termed in [1],

[4], [5]) of the form

Dy=f(x,y(x))Dg

where Dg is the distributional derivative of the right continuous real

function g of bounded variation. In this paper existence and extension of

solutions are treated.

For a measurable space (A', Jl), ca(X, M) will denote, as in Dunford

and Schwartz [2, p. 240], the space of all countably additive scalar (real

or complex) functions (briefly, real measures or complex measures) on

Jt. (Note that real measures form a subclass of the complex ones, while

positive measures do not do so since they include -co as an admissible

value.) ca(Ar, Jl) is a Banach space where norm ||A|| is the total variation

of A on X (see Dunford and Schwartz [2, p. 161]). The total variation

measure of a measure A will be denoted by |A|.

1. Existence and uniqueness of solutions. Let A' be a linear space over

the field J5" where J^" is the set R of real numbers or the set C of complex
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numbers. For each xeX, define

Sx = {ax:-oo < a < 1},        Sx = {ax: - oo < a <1 1}    ifJ^ = Ä;

and

Sa! = {a;c:0< |a| < 1},       Sx = {ax:0 ^ |a| ^ 1}    ifJ^ = C.

Let ^# be a <r-algebra in X containing the sets Sx for all xeX. Let,« be a

positive (T-finite measure or a complex measure on Jt'. Let / be a scalar

function defined on S% x Q.a where £eA" and

Oa = {a:|a|<a}.

Assume that f(x, A(SX)) is /¿-integrable on S^ for each Aeca(S|, Jt¡^

where

^ = {EeJ¿:E^ Sf}.
Consider the equation

(*) dXldPL=f(x,k(Sx))

where JA/í/,« denotes the Radon-Nikodym derivative of A with respect to pt.

Definition 1.    Let a0e£2a, x0eSç, SXt¡c X0eJ/. and let J/0 be the smallest

cr-algebra in X0 containing Sx —Sx  and the sets Sx for xeX0—Sx   (ob-

viously Jt^Jt^). A measure Aeca(A^0, ̂#0) will be called a solution of (*)

on XQ with initial data [SX(¡, a0] if

(i) A(SXo) = a«,

(ii) A(£)eÜa for E&Jf0,

(iii) ¿«/¿o on A^—Sx where ,u0 is the restriction of pi to ^#0 (i.e.

fi0(E)=0 implies A(£)=0° for E<=X0-SXll, EeJ?0),

(iv) A satisfies (*) a.e. [pi0] on A^—Sx¡¡.

The solution A on X0 with initial data [5^, a0] will be denoted, for the

sake of convenience, by A[X0; Sx¡¡, a0]. Clearly the conditions (iii) and (iv)

in the above definition are equivalent to

ME) = f f{x, X{SX)) dfi0   for E c X0 - SXo (E e Jt0).
JE

Theorem 1. Let <x0eQa and x0eSç. There exists a unique solution A0=

AJS^; Sx , a0] of (*) for some x^S^ — S^ if the following conditions are

satisfied:

(i) \f*\(Sx-SxJ=0;
(ii) there exists a pt-integrable function w on S~ such that

\f(x, a)| ^ w(x)

uniformly in aeQa ;

(iii) f satisfies a Lipschitz condition in a; i.e., given a set SXi<^Sç there
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exists a constant L=L(xx) such that

\f(x, «i) -f(x, a2)| ^ L |ax - a2|

for all (x, a,), (x, z2)eSXixQa.

Proof. Let rn be a sequence of real numbers such that rn[\ and

Sr^S^S,^--^ S^.Then

oo

n(sr„xo-^o) = 0,
71=1

and therefore

H(sVo-^0)-o.

We can therefore choose a real number r such that

(1-1) SXo e S„o,

(1.2) i w(x) d |/i|< a - |oo|,

and

(1.3) L M (S„o - SXo) < 1,

where L is a Lipschitz constant for/on 5rx x Qa. It follows from condition

(i) and (1.3) that

(1.4) L \p\ (SrXo - SXo) < 1.

Consider the space ca(S„o, y#0) where J/0 is the smallest o--algebra con-

taining Sx<¡—SXo and all the sets of the form Sx for xeSrX(¡—Sx<¡. Let A be

the collection of all Aeca(SriC , J¿¿) with the properties:

(1.5) A(^o) = a0

and

(1.6) P| ^ fc

where

(1.7) fc = |a0|+ w(x)d\fi\<a,

by (1.2) and condition (i). Clearly A is a closed, nonempty subset of

ca(Srx¡¡, ̂ #0) and is therefore a complete metric space. For each AeA, we

have

(1.8) |A(£)| ^ |A| (£) ^ || A|| ̂ k<a   for £euT0.
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Let T be the mapping defined on A by

(TA)(£) = a0   for£ = ^o,

= Í f{x, USX)) dp   for E e SrXo - S (£ e Ji,\
Je

Then 7/leca(S„.o, J?0), and

UTAH = H + f ¡fix, MSX))\ d \pt\

= |oc0l + w(x) d \ju\    by condition (ii),

= k.

Therefore, TXeA. T thus maps A into itself. Furthermore, if X1, A2eA,

iTXl - TX2)iE) = 0   for E = Sx¡¡,

= \[fix,X1iSx))~fix,X2iSx))]dM

Therefore,

E

for E^Srx-Sx(EeJf0).

|| TXX - TX2\\ = f \fix, A,(Sj) - fix, X2iSx))\ d \M\
•'s,..-*..

(L9) ^l\       \Usx)-^sx)\d\iA
Js_„ -s.
IST*a-S*

< L\iA (S^-S^ ¡Ai -AJ.

It follows from (1.4) and (1.9) that T is a contraction. Hence by the

principle of contraction mapping, T has a unique fixed point A0. Also,

A0(£)eQo by (1.8). A0 is then the solution of (*) on SrXf¡ with initial data

[Sx , a0]. This completes the proof of Theorem 1.

2. Extension of solution. Let /be defined on Xx^ and let the con-

ditions of Theorem 1 be satisfied with S§ and 00 replaced by X and J^

respectively. Theorem 1 yields a solution X0[X0; SXo, a.0] where A0e

ca(*0, ^0), X0=>SXo and A0(5;o)=a0. Let j^eZ,,-.?^ be such that

\pi\iSXi—SXi)=0. There is a similar solution Ax[X1; Sx , ax] where

X1eca(X1, J?i), Xy=>X0 and X-¡iSx )=av Here ^#0 is the smallest a-algebra

containing SXo—SX(i and sets of the form Sx for xeA^—Ä,. and Jix is the

smallest o--algebra containing Sx —Sx and sets of the form Sx for

xeX1 — Sx . It follows from the uniqueness property that A0(£) = A,(£)for

E^^M^C\Jiv Let Jt be the smallest <x-algebra containing the members of
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~#0 and Jtx. Let Aeca(A'1, Jt) be such that

A(£) = A0(£)   for E e JtQ,

= Ai(£)   for E e Jiv

Then A is a solution of (*) on the set Xx such that A(SXo)=cn0. We shall call

A the continuation of A0 to Xv We thus extend the solution A0 to Ar1. By

repeating this process we arrive at a maximal set over which A0 is defined.

3. Special cases. (A) If X=R, ¡F=R and /¿=the Lebesgue measure

m on R, the equation (*) reduces to the equation

(3.1) dl\dm = /(x, A((- oo, x]))

which can be shown to be equivalent to the ordinary differential equation

(3.2) dy¡dx=f(x,y(x)).

More precisely, we shall prove the following:

Theorem 2(A). To each solution y of (3.2) with initial condition y(x0) =

<x0, there corresponds a solution A o/(3.1) such that A((—oo, x0])=a0, and

vice versa.

Proof. Let y0 be a solution of (3.2) on [x0, xx] with initial condition

yo(xo)=!*-o- Define

yÁx) = 0 for x ^ x0,

= )>o(x) — <*o   for x0< x < xt,

— yo(xi) — ao f°r x = *i-

Then j^eNBV where NBV is the class of left-continuous functions cp of

bounded variation such that <p(x)->0 as x—>- — oo, and hence there exists,

by Rudin [3, Theorem 8.14(b)], a unique complex Borel measure A,

such that

(3.3) y1(x) = X1((-cc,x)).

Since yx is absolutely continuous, Xx<^m (by Rudin [3, Theorem 8.16]).

Let Jtq be the smallest oalgebra containing {x0} and the sets (— oo, x] for

x0^x^x1; and define A0 on Jl0 by

A0((- oo, x0]) = oc0,   A0(£) = A,(£)   for £ c [Xn, Xl] (£ e Ji?0).

It is easy to see that A0eca([x0, xj, ^#0) and that A0«m0 where m0 is the

restriction of m to Jíü. Furthermore, for xe[x0, xx], we have

yo(x) = yÁx) + a0 = A,((-co, x)) + a0

(3.4) = A0((x0, x)) + A0((- oo, x0]) = A0((- oo, x))

= A0((— oo, x]),   since A0 « m0 and m0{x} = 0.
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Since y0 is absolutely continuous, being a solution of (3.2) on [x0, xj,

y¡¡ (=dy0/dx) is defined a.e. [m] on [x0, xJ and

j0(x) = a0 +    y'0{t) dt   for x e [x„, x,].

Therefore,

A0([*o, *]) =        jftí) dt.
J[x0.x]

Thus,

(3.5) JÓW = dÀ„ldm0   a.e. [m].

Now (3.4) and (3.5) show that A0isa solution of (*) on (— oo, xx] satisfying

the initial condition A0((—oo, x0]) = a0.

Conversely, let A0 be a solution of (3.1) on (— oo, Xj] with initial con-

dition A0(( —oc, x0]) = a0. Let Ax be a complex Borel measure on R such

that

Ax((—oo, x)) = 0 for x ^ x0,

= A0((—co, x]) — <x0   for x0 < x < x1;

= A0(( —co,X!]) forx>x,;

Ax(£) = A0(£)   for measurable sets £ <= [*„, Xj].

Since A0«w0 on [x0, jcj, A0 being a solution of (3.1), it follows that

Ai«/«. Define y± by (3.3). By Rudin [3, Theorem 8.14(a) and Theorem

8.16], jx is absolutely continuous. Define

yo(x) = )\(x) + ao  for x e [*o> *i]-

Then >0 is absolutely continuous and

y0(x) = A0((- co, x])   for x e [x0, xj.

Also, since

we have

A0((x0, x]) = -— (i) dt,       x e (x0, xj,

Therefore,

r- <ü0
= a0 +      ——i

Jx0 dm0
y0(x) = a0 + |   —{t)dt.

—° (0 = J0(0   a.e. [m] on [x0, x,].
dm

Thus, y0 is a solution of (3.2) on [x0, xx] satisfying ^0(x0) = oc0. This com-

pletes the proof of Theorem 2(A).
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Remark. In the special case considered above Theorem 1 reduces to a

well-known local existence and uniqueness theorem for ordinary differen-

tial equations.

(B) Let X=R, SP=R and [i=pig where pig is the Lebesgue-Stieltjes

measure induced by a right continuous function g of bounded variation.

In this case the equation (*) takes the form

(3.6) dX/dfig= fix, XU-oo, x])).

Consider the equation

(3.7) Dy=fix,yix))Dg

where Dg denotes the distributional derivative of g. The equation (3.7) is

in fact equivalent (see [1], and also [4], [5]) to

(3-8) yix) = yix0) + Í      fis, v(s)) dg.

By a solution y of (3.7) with initial condition j(x0) = a0 is meant a right

continuous function^ of bounded variation such that;; satisfies (3.8) and

and j(x0) = a0.

We shall prove the following:

Theorem 2(B). To each solution y of (3.7) with initial condition yix0)=

<x0, there corresponds a solution X o/(3.6) such that A((—co, x0]) = a0, and

vice versa.

Proof. Let y0 be a solution of (3.7) on [x0, x,] with initial condition

y0ix0)=a0. Extend y0 on (— co, x0) by defining j0(x)=0 for xe(— co, x0).

Let J/0 be the cr-algebra containing {x0} and the intervals (-co, x] for

xe[x0, xj. Let XVg be the restriction to ^#0 of the Lebesgue-Stieltjes

measure on (— co, Xj] induced by y0. Then

¿„0((*\ *"]) =yo(x") - yoix),       x0 < x' < x" Í Xj,;

\((~ CO, X]) = F0(X), X 6 [X0, Xj].

From (3.8) and (3.9), we obtain

W> *"]) = [       fix, XJi-co, x]))dg

and

\((- °°. xo\) = yo(xo) = «o

which shows that A    is a solution of (3.6) with initial condition

A„o((-co,x0]) = a0.
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Conversely, let A0 be a solution of (3.6) on (— oo, ß] with initial con-

dition A   ((— oo, x0]) = a0. Define j0W=Ao((— °°> x]) f°r *e[*o> ß]- Then

y0(s) - y0(xo) =      fis, y0(s)) ds  and  J'o(^o) = «o-
J{x0,x]

If Xx>x2>- • ->x„->-x, then y0(x„)->-y0(x), since

00

(-co, x] =D(-°o, x„].
n=l

Thusy0 is right continuous on [x0, ß]. If x0<x,<- • -<xn=ß, then

t Ij'oW - J'oí^-i)! = 2 l^ofe-i. ««DI ^ l^ol ((-œ> i9))
í=l í=l

so that

v(y0Axo,ß])u\K\((-co,ß))

where r(j0, [x0, ß]) denotes the total variation of y0 on [x0, ß]. Since A0 is

of bounded variation, the last inequality shows that y0 is a function of

bounded variation on [x0, ß]. Thus y0 is a solution of (3.9) on [x0, Xj] with

initial condition j0(x0) = a0. This completes the proof of Theorem 2(B).
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