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MAXIMAL  INDEPENDENT  COLLECTIONS

OF CLOSED SETS

HARVY  LEE  BAKER,  JR.

Abstract. A theorem is proved which implies that if X is a

separable metric space then there exists a countable maximal

independent subset of the lattice of closed subsets of X. In the case

where X has no isolated points this independent set is nontrivial

in the sense that X does not belong to it and it contains no single-

tons. Furthermore, if X is a compact metric continuum such that

(J {O | O is an open subset of X and O is homeomorphic to En for

some n > 1} is dense in X then there exists a countable maximal

such collection whose elements are connected. This complements

previous work by the author which characterized continua for

which there are such collections of a specialized nature.

1. An independent subset of a partially ordered set is one such that no

two elements of it are comparable. See [5]. An amonotonic collection of

sets is one which is independent relative to set inclusion. A complete

amonotonic decomposition of a connected F, space F is a maximal amono-

tonic collection of closed connected subsets of F which is nontrivial in the

sense that it contains at least two elements and at least one element of it

is not a singleton.

No compact metric continuum has a finite complete amonotonic

decomposition (Theorem 1.1 of [3]), whereas many have countable such

decompositions and some have only uncountable ones (arcs, indecompos-

able continua, etc.). Theorem 2.3 is the main object in the present paper

and describes maximal independent subsets of the lattice of closed subsets

of many T3 spaces (all those having "pseudodevelopments"). The cardi-

nality of the maximal independent subset obtained by use of this theorem is

often less than the cardinality of the topology of the space, and in par-

ticular it follows that if A is a separable metric nondegenerate space then

there is a countable maximal independent subset of the lattice of closed

subsets of A which is nontrivial in the sense that it does not contain X,

and if the set of isolated points of Ais not dense in Athen the only single-

tons belonging to it are isolated points. Theorem 2.3 also implies that if F
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is a compact metric continuum and

U {O I O is open in T and O ^ £n for some n ^ 2}

is dense in T then there exists a countable complete amonotonic decom-

position of T. An even larger class of continua which have countable

complete amonotonic decompositions is given in Theorem 2.5. Even this

theorem, however, falls short of characterizing those continua which do

have such decompositions. For example in [3] the following statements

concerning a compact metric continuum M are shown to be equivalent :

(A) There is a complete amonotonic decomposition G of M such that if

g1 and g2 are distinct elements of G then M = g1 U g2, and M — g, is

connected. (B) There is a monotone continuous mapping £from M onto

a simple closed curve J such that if 77 is a proper closed subset of M then

£(77) j¿ J. It is impossible to obtain a countable complete amonotonic

decomposition of such an M using Theorem 2.5 (note that statement (A)

implies that G is countable). Finite graphs with no end points, and continua

related to them the way M is related to S1 in statement (B), also have

countable complete amonotonic decompositions (see [4] and [2]), but no

such decomposition can be obtained by application of Theorem 2.5.

It is of interest to note that the complete amonotonic decompositions

obtained in [4] for finite graphs with no end points, and the decomposition

G obtained in statement (A), are not maximal independent subsets of the

lattice of closed subsets of the respective spaces, but that the decompositions

obtained in Theorem 2.5 and Theorem 2.6 (for "near manifolds" T) are

indeed maximal in this lattice.

2. The following definitions introduce terminology used in the state-

ment of Theorem 2.3 and throughout the proof of it.

Definition 2.1. A pseudodevelopment of the T3 space (X, T) is a

sequence G = Gu C72, • • ■ of nonempty collections of disjoint open sets

such that (a) for each n, Gn+1 refines Gn and Cl (C7*) = X (the star is the

union), and (b) if O is a nonempty open set then there is an n such that

some element of Gn is a subset of O.

Definition 2.2. If G = Glt G2, • • ■ is a pseudodevelopment of the £3

space (X, T) then W(G) will denote the collection to which X belongs if

and only if there exists a positive integer j and j distinct elements

Xlt X„ • •, X, of G j such that (a) X = Interior (JP, U X2 U ■ • • U X¡),
and (b) if /' is an integer such that 1 ^ / <j then A", U X2 u • • • U A~, is

not a subset of the union of i or fewer elements of G¿.

Theorem 2.3. If G = G1, G2, ■ ■ • is a pseudodevelopment of the T3

space (X, T) and for each n, each element ofGn contains at least two elements

ofGn+1, then W(G) is a maximal independent subset of T.
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Proof. If for each n we let Wn denote the sets of elements of WiG)

which are determined by n distinct elements of Gn, then a routine argument

shows that W1 is an amonotonic collection and that if W1 U W2 U • • • U W¡

is an amonotonic collection then so is W1 U W2 U ■ • ■ u Wi+l. Hence

WiG) is an amonotonic collection.

It must be shown now that every open set either contains or is a subset

of an element of WiG). Suppose D is an open set. Suppose there exists an

integer / such that D intersects at most i elements of G¡. We will show that

in this case D is a subset of some set of WiG). Let 0,, 02, • • • , 0„ denote

the distinct elements of G¿ which intersect D. We note that since, for each i,

the elements of G¡ are disjoint and Cl (G*) = A, the set / =

Interior (G"! U Ö2 U ■ • • U Ön) must contain D. Hence if we can establish

that / is subset of a set of WiG) we are through with this portion of the

argument.

That this is so follows from the seemingly more general proposition:

If />!, D2, ■ ■ • , Dm are distinct elements of Gh where m _ A then

Interior (5, U 52 U • • • U Dm) is a subset of a set of WiG). We prove

this proposition by letting e denote the least positive integer such that

i), U Dj U • ■ • U Dm is a subset of e or fewer elements of Ge. We know

however that Ge contains at least 2e~1, hence at least e, elements. Thus

we can find e distinct elements A1; A2, . . . , he of Ge such that

Dj u D2 U • • • u Dm c A, U A2 U • • ■ U he. Now A, U A2 U • • • U he

satisfies (a) of Definition 2.2, and if (b) is not satisfied then there is an /

such that 1 < / < e and A, U A2 U • ■ • U he is a subset of the union of /

distinct elements of G,. But in this case e is no longer the least positive

integer such that /), U D2 U • • • U Dm is a subset of e or fewer elements

of Ge, a contradiction. Hence Int (A, U h2 U • • • U he) e WiG), and

since F»! U D2 U • ■ • u Dm <= A, u A2 U • • • U he implies

Int (5, u j, U • • • U Dm) c int (Â! U A2 U • • • U he),

we are through.

Suppose now that for each i, D intersects at least i + 1 elements of G>

We will show that D contains a set of WiG). There exist an integer k and

two distinct elements X1 and A2 of Gk such that A, U A2 <= D and A, and

A2 lie in the same element of Gk_x. Let Aï denote the element of C7, which

contains X1 U A2 and let h\ be an element of Gx distinct from h\ which also

intersects D. Now let A2 denote the element of G2 which lies in h\ and

contains Ax U A2, let A2 denote an element of G2 which lies in h[ and inter-

sects D, and let A2 denote any element of G2 which intersects D and is

distinct from A2 and A2. We proceed by choosing four distinct elements

#3, hi, hi, h\ of G3 such that each intersects D and such that h\ c A2,

A3 <z A2, A3 c A2 and A, U A2 c A3. We continue in this manner until we



608 H. L. BAKER, JR. [April

finally obtain k distinct elements //£_,, /j2.^,, • • • , hk_x of Gk^ such that

each intersects D, A, U A2 c h\_x and hak_x c hak_2 for a = 1, 2, • • • ,

A: — 1. Notice that the entire set of h¡'s has been constructed in such a

way that hba c: hbcif a ^ c and b ^ c + 1. A consequence of this (one that

will be used later) is that at the (n + l)th stage of the construction,

h\+i, hn+i, ' " ' j Itn+i are chosen in such a way that the union of all of them

does not lie in the union of n elements of Gn. This implies directly that if

m <n then \J hln+1 is not a subset of the union of m or fewer elements of

Gm-
Since (A, T) is £3 and G is a pseudodevelopment of (X, T), there is an

integer d > k such that for every a, where 2 ^ a ^ k, //£_, n 7) contains

the closure of an element of Gd. Letga, for« = 2, 3, • • • , k, be an element

of Gd whose closure lies in D n hak_x. Choose now distinct elements

gl gl ■■■, g?1-" of Gd such that gl u gî U • • • U gí+l~k c A", u X2

and such that if k + 1 ^ i ^ d then no two g"'s lie in the same element of

G¿. That this can be done is evident from the facts that Xj and A"2 contain

distinct elements xn, x12, and x2l, x22 of Gk+1 respectively, that xn, x12,

x21, x22 contain distinct elements xui, xn2, etc. of Gk+2, and so forth.

We could if we wished choose 2<i~*g"'s meeting the above requirements.

Let 7 = g\ U gl u • • • U gi+1'k UftUj,U---Uft. The closure of

each of the g's is in 7), so Interior 7 c D. It will be shown now that

Interior I e W(G). Suppose 1 ^ e < d and that 7 is a subset of the union

of e distinct elements of Ge. If k — 1 ^ e < d, then since the //JUi's are

distinct and ga <= ̂ _j for a 2: 2, it follows that the set

glUglKJ-.-Ugf»-*

lies in the union of e — (k — 1) = e + 1 —/c elements of Ge. But e < d

and, therefore, at least two of the elements g\, g2, • • • ,g1+1~k lie in the

same element of Ge. This contradicts one of the defining properties of the

gl's as given in the last paragraph. Hence, 1 ^ e < k — 1. In this case,

since {AjUi, h\_x, ■ • ■ , /zjjLj} properly covers 7, it follows that

ÂJU U Ci U • • ■ U At-!

is a subset of the union of e elements of Ge where e < k — 1. But this

contradicts the concluding three statements of the third paragraph of this

proof (one of which in effect says that this is one of the properties in-

herited by the hk_iS as a result of the manner in which they were selected).

Therefore Interior 7 c D and Interior 7 e W(G), completing the argument.

It is a consequence of the argument above that if D is not a subset of

any element of W(G) then it contains infinitely many elements of W(G).

This follows since either d or k can be replaced by any larger integer.
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Corresponding to every maximal independent subset W of the topology

F on A is a maximal independent subset W' = {X — w | w e W] of the

lattice of closed subsets of A. This correspondence gives us the following

result.

Theorem 2.4. If M is a separable metric space, then there exists a

countable maximal independent subset C of the lattice of closed subsets ofM.

In the case where M contains no isolated points (i.e. every point of M is a

limit point of M) C is nontrivial in the sense that M $ C and C contains no

singletons.

Proof. If M is a separable metric space with no isolated points then

it is easy to construct pseudodevelopments of M which satisfy the hy-

pothesis of Theorem 2.3. For example: For every open set O oí M let

GiO) denote a maximal collection of disjoint open subsets of O whose

diameters are less than one half the diameter of O. The sequence defined

by G, = GiM), Gn+1 = [j {G(x) | x e GJ is a pseudodevelopment of M

satisfying the conditions of Theorem 2.3. Hence there is as a consequence

of the remark preceding the statement of this theorem, a maximal in-

dependent subset of the lattice of closed subsets of M which has the

same cardinality as WiG), where G = G1, G2, ■ • • . But WiG) is countable

since it is a subset of the set of all finite subsets of (J Gn, and G¿ is count-

able for each i since M is separable and the elements of G, are disjoint

open sets.

If M has an isolated point P then {M — P, {£}} is a maximal independent

collection of closed subsets of M. If M2 = M — Mx is nonempty, where

Mx is the set of all isolated points of M, then there is a nontrivial countable

maximal independent subset of the lattice of closed subsets of M of the

form Wx U {{£} | P is an isolated point of A/}, where Wx is a maximal

independent collection of closed subsets of M2 obtained by application of

the results of the first part of this argument.

Theorem 2.5. If M is a separable metric space, G = G1; G2, • ■ • is a

pseudodevelopment of M satisfying the hypothesis of Theorem 2.3, and

M — A* is connected for every subcollection A of \JGn, then W' =

{M — x | x e WiG)} is a countable complete amonotonic decomposition of

M. Furthermore, W' is also a maximal independent subset of the lattice of

closed subsets of M.

Theorem 2.6. If T is a compact metric continuum and ljn>i Tn is

dense in T, where Tn is the union of all open subsets of T which are homeo-

morphic to En, then there exists a countable complete amonotonic decom-

position of T which is also a maximal independent collection of closed

subsets of T.
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Proof. The space (J«>i Tn is a separable metric space and has as a

basis the collection of all open cells g such that (a) g c Tn for some n,

(b) the diameter of g is less than the distance from g to £ — U»>i Tn.

Open cell here is an open subset of T which is homeomorphic to £"

for some n and whose closure is a closed cell. From this basis (or any other

basis) a pseudodevelopment G = G,, G2, • • • can be constructed such that

the boundaries of the elements of |J Gn are disjoint. Now W(G) is a

maximal independent subset of the topology of ljn>1 Tn and, by condition

(b) and the fact that Cl (ljn>i Tn) = T, we know that every open set of T

which intersects £ — U«>i Tn contains an element of G, and hence an

element of W(G). Here we should note that Int g = g for open cells g.

Thus W(G) is a maximal independent subset of the topology on £ and

the set of complements of the elements of W(G) is a countable maximal

independent subset of the lattice of closed subsets of T. The elements of

W(G) have connected complements since the components of U«>i Tn are

connected manifolds of dimension greater than one, no such manifold is

disconnected by the union of a finite number of open cells whose

boundaries are disjoint, and no element of IJ Gn has a boundary which

intersects T — U«>i 7„.
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