ON CHARACTERIZATION OF RIEMANNIAN MANIFOLDS BY GROWTH OF TUBULAR NEIGHBORHOODS¹ ## NATHANIEL GROSSMAN ABSTRACT. If the area function of the tubular neighborhoods of a compact submanifold of a Riemannian manifold satisfies a certain linear differential inequality, then the codimension of the submanifold is at most the order of that inequality. 1. Let N be a Riemannian manifold of dimension $n \ge 2$ and let M be a compact orientable submanifold of dimension m embedded in N. (All manifolds, maps, etc. are supposed smooth.) For s > 0, let M_s denote the set of points lying on geodesics normal to M and at arc length s from s. For sufficiently small s, s is a smooth hypersurface in s. We denote by s (s) the area of s is a smooth hypersurface in s in s we denote by and used it to characterize the Euclidean plane amongst Riemannian manifolds. Later he and s is a Holzsager [1] proved the following more encompassing characterization: A Riemannian manifold has the property that the growth function $\mathcal A$ of each one of its compact hypersurfaces satisfies the linear differential equation $$\mathscr{A}''(s) + c\mathscr{A}(s) = 0$$ (where c is a fixed constant) if and only if it is a two-dimensional Riemannian manifold of constant curvature equal to c. In this note we obtain a formula for $\mathscr{A}''(s)$ and indeed for all the derivatives of \mathscr{A} , valid for submanifolds M of any dimension. Our method yields \mathscr{A}'' in a simpler, more mechanical fashion than does Wu's. We can easily reprove the theorem of Holzsager and Wu. We also obtain an extension of their theorem to the case when \mathscr{A} satisfies a linear differential inequality of higher order with "nice" coefficients. We show the order of this differential inequality is an upper bound for the codimensions of the submanifolds involved. Received by the editors July 9, 1971. AMS 1970 subject classifications. Primary 53B20, 53B25; Secondary 53C20, 53C40. Key words and phrases. Riemannian, tubular neighborhood, area function, differential inequality, constant curvature, Cartan calculus. ¹ This research was partially supported by NSF Grant GP-11476. 2. Let M be a fixed compact orientable submanifold of N with an embedded tubular neighborhood U in N. Let $U^* = U - N$. Our arguments are local, so we may suppose N to be oriented. Choose a positively oriented (local) orthonormal frame field e_1, \dots, e_n on U^* , supposed adapted so e_1 is the tangent vector of geodesics leaving M normally, while each e_i $(2 \le i \le n)$ is parallel along such a geodesic. Let $\omega_1, \dots, \omega_n$ be the dual coframe and let ω_{ij} $(1 \le i, j \le n)$ be the connection 1-forms of the Riemannian structure of N as restricted to U^* . The forms ω_i , ω_{ij} satisfy the Cartan structural equations $$d\omega_i = \sum_{j=1}^n \omega_{ij} \wedge \omega_j$$ and $$d\omega_{ij} = \sum_{k=1}^{n} \omega_{ik} \wedge \omega_{kj} + \Omega_{ij},$$ where Ω_{ij} is the curvature 2-form. For sufficiently small s>0, $M_s \subset U^*$ and is a hypersurface with normal field e_1 so there are functions $h_{ij}=h_{ji}$ $(2 \le i, j \le n)$ on U^* with $$\omega_{1i} = \sum_{j=2}^{n} h_{ij} \omega_{j}.$$ The mean curvature is given at $p \in M_s$ by $$H(p) = \frac{1}{n-1} \sum_{i=2}^{n} h_{ij}(p).$$ (Note that the signs have been chosen so that M_1 has H=1 when M is the origin in the Euclidean plane.) Finally, the function $\mathcal{A}(s)$ is given by $$\mathscr{A}(s) = \int_{M_s} \omega_2 \wedge \cdots \wedge \omega_n.$$ We use Stokes' theorem on the closed set $M_{s+\delta,s}$ included between M_s and $M_{s+\delta}$ ($\delta > 0$). We then have $$\mathscr{A}(s+\delta)-\mathscr{A}(s)=\int_{M_{s+\delta,s}}d(\omega_2\wedge\cdots\wedge\omega_n).$$ Using the first Cartan structural equation, we calculate $$d(\omega_2 \wedge \cdots \wedge \omega_n) = (n-1)H\omega_1 \wedge \cdots \wedge \omega_n.$$ Hence $$\mathscr{A}(s+\delta)-\mathscr{A}(s)=\int_{M_{s+\delta}}(n-1)H\omega_1\wedge\cdots\wedge\omega_n.$$ Keeping in mind the geometrical meaning of ω_1 , we divide by δ and let $\delta \rightarrow 0$ to obtain $$\mathscr{A}'(s) = \int_{M_s} (n-1)H\omega_2 \wedge \cdots \wedge \omega_n.$$ In order to calculate higher derivatives of \mathcal{A} , it will be convenient to use this notation: if F is a smooth function on U^* , then $$dF = \sum_{j=1}^{n} F_{j} \omega_{j}.$$ Again applying Stokes' theorem, we have $$\mathscr{A}'(s+\delta)-\mathscr{A}'(s)=\int_{M_{s+\delta}}(n-1)\,d(H\omega_2\wedge\cdots\wedge\omega_n).$$ It follows easily that $$\mathscr{A}''(s) = \int_{M_s} (n-1)\{H_1 + (n-1)H^2\} \omega_2 \wedge \cdots \wedge \omega_n.$$ There is a general formula: $$\mathscr{A}^{(k)}(s) = \int_{M} I_k \omega_2 \wedge \cdots \wedge \omega_n.$$ The functions I_k satisfy the recurrence relation $$I_{k+1} = I_{k,1} + (n-1)HI_k$$ We will not attempt to give an explicit formula for I_k in terms of H and its derivatives. 3. Now we will extend the theorem of Holzsager and Wu. The following estimate generalizes the lemma of Wu [2]. LEMMA 1. As $s \rightarrow 0$, $H \sim (n-m-1)/(n-1)\cdot 1/s$. This asymptotic relation is uniform from one normal geodesic to another and may be differentiated as often as desired. (Here we use the asymptotic symbol \sim in the usual sense: $f \sim g$ means $f(s)/g(s) \rightarrow 1$ as $s \rightarrow 0$.) Verification of the asymptotic relation of Lemma 1 along a given normal geodesic proceeds from an elementary calculation using the first and second Cartan structural equations. We obtain relations expressing the successive derivatives of each h_{ii} in terms of the lower-order radial derivatives of h_{ii} as well as the Riemannian curvature and its derivatives. Using the smoothness of the data, we establish inductively that each radial derivative of h_{ii} has the proper order of infinity as $s \rightarrow 0$. Knowing this, we can use the uniqueness of asymptotic expansion to calculate the asymptotic behavior of the derivatives of H as $s \rightarrow 0$. The compactness of M allows the conclusion that these asymptotic estimates are uniform over M from one normal geodesic to another. The perturbation techniques used are by now standard in global analysis. Using the recurrence relation for I_k and Lemma 1, we can prove an estimate for I_k by induction. LEMMA 2. As $s \rightarrow 0$, $$I_k \sim (n-m-1)\cdots(n-m-k)s^{-k}$$ and this estimate is uniform from one normal geodesic to another. Here is our main result. THEOREM. Let k be a positive integer and fix $m \le n-2$. Suppose for each compact M of dimension m there are bounded continuous functions c_1^M, \dots, c_k^M such that the area function $\mathscr A$ of M satisfies the differential inequality $$\mathscr{A}^{(k)}(s) + \sum_{j=1}^{k} c_j^{M}(s) \mathscr{A}^{(k-j)}(s) \le 0$$ for sufficiently small s>0. Then $n-m \le k$. The proof is based upon Lemma 2. We have $$\mathscr{A}^{(j)}(s) = \int_{M_{\bullet}} I_j \omega_2 \wedge \cdots \wedge \omega_n$$ whence the differential inequality hypothesized implies $$\int_{M_s} \left\{ I_k + \sum_{j=1}^k c_j^M(s) I_{k-j} \right\} \omega_2 \wedge \cdots \wedge \omega_n \leq 0.$$ By Lemma 2, the function in curly brackets has the uniform asymptotic expression $$\{\cdots\} = (n-m-1)\cdots(n-m-k)s^{-k} + o(s^{-k})$$ as $s \rightarrow 0$. If n-m > k, $\{\cdots\} > 0$ for sufficiently small s > 0, so $$\int_{M_{\bullet}} \{\cdots\} \omega_2 \wedge \cdots \wedge \omega_n > 0.$$ This contradiction shows $n-m \le k$, as was claimed. 4. We show how to obtain the theorem of Holzsager and Wu. Suppose $$\mathscr{A}''(s) + c\mathscr{A}(s) = 0$$ for some constant c. We apply our theorem with submanifolds M consisting of single points, so m=0. We conclude n=2. Calculating I_2 explicitly, we find $$\mathscr{A}''(s) + c\mathscr{A}(s) = \int_{M_s} (H_1 + H^2 + c)\omega_2.$$ In our case, M_s is a curve. In terms of the adapted coframe field, $\omega_{12} = H\omega_2$. The Gauss curvature function K satisfies $$d\omega_{12} = -K\omega_1 \wedge \omega_2$$ from which we obtain $H_1+H^2=-K$. Therefore, $$\int_{M_s} (c - K)\omega_2 = 0.$$ Since M and s are arbitrary, $K \equiv c$ on N. ## **BIBLIOGRAPHY** - 1. R. A. Holzsager and H. Wu, A characterization of two-dimensional Riemannian manifolds of constant curvature, Michigan Math. J. 17 (1970), 297–299. - 2. H. Wu, A characteristic property of the euclidean plane, Michigan Math. J. 16 (1969), 141-148. MR 39 #7544. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024