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ON  CHARACTERIZATION  OF  RIEMANNIAN
MANIFOLDS BY GROWTH OF TUBULAR

NEIGHBORHOODS1

NATHANIEL GROSSMAN

Abstract. If the area function of the tubular neighborhoods

of a compact submanifold of a Riemannian manifold satisfies a

certain linear differential inequality, then the codimension of the

submanifold is at most the order of that inequality.

1. Let TV be a Riemannian manifold of dimension «_2 and let M be a

compact orientable submanifold of dimension m embedded in N. (All

manifolds, maps, etc. are supposed smooth.) For i>0, let Ms denote the

set of points lying on geodesies normal to M and at arc length s from M.

For sufficiently small s, Ms is a smooth hypersurface in N. We denote by

¿¡/is) the area of Ms. H. Wu [2] derived an elegant formula for sé"is)

and used it to characterize the Euclidean plane amongst Riemannian mani-

folds. Later he and R. A. Holzsager [1] proved the following more en-

compassing characterization :

A Riemannian manifold has the property that the growth function sé of

each one of its compact hypersurfaces satisfies the linear differential equation

sé" is) + cséis) = 0

iwhere c is a fixed constant) if and only if it is a two-dimensional Riemannian

manifold of constant curvature equal to c.

In this note we obtain a formula for sé'\s) and indeed for all the

derivatives of sé, valid for submanifolds M of any dimension. Our method

yields sé" in a simpler, more mechanical fashion than does Wu's. We can

easily reprove the theorem of Holzsager and Wu. We also obtain an ex-

tension of their theorem to the case when sé satisfies a linear differential

inequality of higher order with "nice" coefficients. We show the order of

this differential inequality is an upper bound for the codimensions of the

submanifolds involved.
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2. Let M be a fixed compact orientable submanifold of TV with an

embedded tubular neighborhood <7in TV. Let £/*=[/—TV. Our arguments

are local, so we may suppose TV to be oriented. Choose a positively oriented

(local) orthonormal frame field ex, • ■ ■ , en on U*, supposed adapted so

ex is the tangent vector of geodesies leaving M normally, while each et

(2_/_/î) is parallel along such a geodesic. Let m1, ■ ■ ■ , w„ be the dual co-

frame and let coi3 (1 <i,j^n) be the connection 1-forms of the Riemannian

structure of TV as restricted to U*. The forms ro¿, mti satisfy the Cartan

structural equations
n

d<*>i = 2 (oi} A Wj
3=1

and
n

d(°ii = 2 Mik A mki + ^0.
fc=l

where QH is the curvature 2-form.

For sufficiently small s>0, Ms^ U* and is a hypersurface with normal

field ex so there are functions hi}=hH (2^/, /'_«) on U* with

n

«l« = 2 hHmr
3 = 2

The mean curvature is given at peMs by

H{p) = ̂ — 2 Mi»)-
n - 1 ;=s2

(Note that the signs have been chosen so that M1 has 77= 1 when M is the

origin in the Euclidean plane.) Finally, the function s/(s) is given by

Jm,
¿é(s) = 1    U)2 A • • • A wn.

Jm,

We use Stokes' theorem on the closed set M3+SiS included between Ms

and Ms+S (<5>0). We then have

s/(s + S) — J2/(s) = <T(ft>2 A ■ • • A œ„)
/JM.+S,,

Using the first Cartan structural equation, we calculate

d(co2 A • ■ • A cjn) = (n — i)Hu>1 A • • • A wn.

Hence

j/(s + ô) — s/(s) = 1 (n — 1)77(0)! A • • • A <an.



558 NATHANIEL GROSSMAN [April

Keeping in mind the geometrical meaning of co,, we divide by ô and let

<5->-0 to obtain

sé'is) =      in — l)Hw2 A • • • A 0)„.
hi,

In order to calculate higher derivatives of sé, it will be convenient to

use this notation: if Fis a smooth function on £/*, then

n

dF = ¿ F3o)3..

3 = 1

Again applying Stokes' theorem, we have

sé'is + ó) - sé'is) = in- 1) diHm2 A • • • A con).
Jms+s,s

It follows easily that

sé"is) =      in - 1)1^ + in- \)H2}w2 A • • • A w„.
JM,

There is a general formula:

séik)is) = \    Ikco2 A • • • A a>n.
Jm,

The functions Ik satisfy the recurrence relation

4+1 = 4,i + (" - 1)#4-

We will not attempt to give an explicit formula for Ik in terms of H and its

derivatives.

3. Now we will extend the theorem of Holzsager and Wu. The following

estimate generalizes the lemma of Wu [2].

Lemma 1. As j-*0, //~(n—m—1)/(«—1)-1/.?. This asymptotic relation

is uniform from one normal geodesic to another and may be differentiated

as often as desired.

(Here we use the asymptotic symbol ~ in the usual sense :/~g means

f(s)lg(sy+l as j-*0.)
Verification of the asymptotic relation of Lemma 1 along a given normal

geodesic proceeds from an elementary calculation using the first and second

Cartan structural equations. We obtain relations expressing the successive

derivatives of each hu in terms of the lower-order radial derivatives of hit

as well as the Riemannian curvature and its derivatives. Using the smooth-

ness of the data, we establish inductively that each radial derivative of

hu has the proper order of infinity as s-*0. Knowing this, we can use the
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uniqueness of asymptotic expansion to calculate the asymptotic behavior

of the derivatives of 77 as s-*0. The compactness of M allows the con-

clusion that these asymptotic estimates are uniform over M from one

normal geodesic to another. The perturbation techniques used are by now

standard in global analysis.

Using the recurrence relation for Ik and Lemma 1, we can prove an

estimate for Ik by induction.

Lemma 2.   As i-»0,

h ~ in — m ~ 1) ■'•(« — m — k)s~k,

and this estimate is uniform from one normal geodesic to another.

Here is our main result.

Theorem. Let k be a positive integer and fix m_n—2. Suppose for each

compact M of dimension m there are bounded continuous functions cM, ■ • • ,

c^ such that the area function sé of M satisfies the differential inequality

k

¿¿lk)(s) + 2 cfis^-'Xs) ^ 0
3=1

for sufficiently small j>0. Then n—m^k.

The proof is based upon Lemma 2. We have

séu\s) =       I¡(o2 A ■ ■ ■ A (on

JMa

whence the differential inequality hypothesized implies

\M [h + 2 cf(a)/».,j«>, A • • • A wn = 0.

By Lemma 2, the function in curly brackets has the uniform asymptotic

expression

{•••} = (« — m — 1) •••(« — m — k)s~k + o(s~k)

as S-+0. If n—m>k, {■ ■ -}>0 for sufficiently small s>0, so

{• • •}co2 A • • • A o)n > 0.

This contradiction shows n—m^k, as was claimed.

4. We show how to obtain the theorem of Holzsager and Wu. Suppose

s/"(s) + cs/(s) = 0

jJM
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for some constant c. We apply our theorem with submanifolds M con-

sisting of single points, so w=0. We conclude n = 2. Calculating I2 ex-

plicitly, we find

sé"is) + cséis) = i   (H1 + H2 + c)a>2.

In our case, Ms is a curve. In terms of the adapted coframe field, col2=

Hco2. The Gauss curvature function K satisfies

du>12 = —K(t>i A ft>2

from which we obtain H1 + H2=—K. Therefore,

(c - K)a>2 = 0.

Since M and s are arbitrary, K=c on A.
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