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COEFFICIENTS  FOR  THE  AREA THEOREM

A.   W.   GOODMAN1

Abstract. Let /00=2"=1<V, and set G(z)=f(z-'')-1"'=

2n=oô»p-irl~"1'- This paper finds an explicit formula for £•„„_, in

terms of the a„. Such a formula (apparently previously unknown)

may be very useful in the theory of univalent functions.

1. Introduction. The importance of the area theorem in the theory of

univalent functions is well known [1]. One form of this theorem [8, p. 209]

runs as follows.

Theorem A.    Suppose that f(z) is regular and univalent in |z|<l, and

f(z) = z + J flnz".

g(z) = — = z + J ^.
/(1/Z) n=0Z"

I"|g„|2^l.
n=X

Although the inequality (3) is useful in obtaining properties of the

function/(r) and domains for the coefficients an, this usefulness is some-

what limited because the gn are complicated functions of the an, and the

computation of these functions is time consuming for large n (here large

means w>4). As far as the author is aware no general formula for gn

has been given up to this time. The purpose of this paper is to present

such a formula.

Although our methods are different from those used by Hummel [4],

it was his excellent treatment of an analogous problem in determining the

Grunsky coefficients that encouraged the author to search for the formula

given below.
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(1)

Define G(z) by

(2)

Then

(3)
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It should be mentioned that the inequality (3) is quite often misnamed.

A study of the papers involved [2], [3] clearly shows that (3) was first

proved by Gronwall, and consequently we refer to it as Gronwall's

inequality. This priority of Gronwall has also been noticed by Jenkins

[5, p. 2].

2. The formula. It is often useful to consider (f(z2))xn rather than

f(z). More generally we let p be an arbitrary positive integer, and we

replace (2) by

(4) G(z) = (/(l/z"))-1' - = z + f &3.
*—•   -nv— 1
n=l z

Direct and laborious computations give the following formulas

(5) &2i=--a2,

>> X   -      l    P +  *   -2(6)   gllli=--a3 + <-^ai,
t„2

P ¿P

(')   gsj,-i = —~at + —— a2a3-—-a2,

P V% 6p*

gip-i = - ~~ as + —T~ a*ai +   _ »   us
P P 2P

(8) (2p + l)(p + 1)   2        (3p + l)(2p + l)(p + 1)   4
-a«a» -+■-:-a*

2p3 24/ 2

Before proceeding, it is convenient to introduce a compact notation for

the products that are beginning to appear in (7) and (8). Indeed we set

m

(9) y(p, m) = (p+ l)(2p + 1) • • • (mp + 1) = YlUp + 1),
i-l

with the usual convention that y(p, 0)=1. Then

(„, 1       ,  P+ 1 ,  P + 1
gsp-i = - - fl6 + —— a2a5 + —— a^^

P P P

(10) y(p, 2) / 2 >x   ,  y(p,3)   3 y(p, 4)   ,
- -¿-r (a,«, + **) + -^- *2«< - "^ °»
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P P

y(p,2)(a\a

P"

1 / a¡\
-\a2a6 + a3a5 + —I

(alai  , .  a¡\

(11) y(P,3)¡a\ai     a¡a¡\

p1    \ 6 4 /

y(p, 4) 4    . y(p, 5) 6

24/        3      720p6    "

We have listed the first six cases of our general formula explicitly

because the sixth case, equation (11), is the first one that involves a-,, and

7 is the smallest integer for which the general conjecture, \an\^n, is

currently open.

The general formula is almost obvious from the six cases already cited.

However to express it in a simple way it is convenient to set bn=an+1, for

n—1,2, • • • , in order to bring to the surface a certain order in the formulas

that might otherwise go unnoticed (see Hummel [4]).

Theorem 1. Let S(n) be the set of all n-tuples (r,, r2, • • • , rn) of

nonnegative integers for which

(12) rx + 2r2 + 3r3 -\-h nrn = n,

and for each such n-tuple define m by

(13) ri + r2+---+rn = m.

Ifbn=an+1, n=l, 2, ■ • ■ , andgl^ is defined by equation (4) where f(z)
is given by (1), then

(U, „w    _^(-Dmy(p,m-l)b?b?---br;

p-rjîr,! • ■ ■ r.!

where the sum is over all n-tuples in S(n).

It is a simple matter to check that the formula (14) gives (5), (6), (7),

(8), (10) and (11) when «=1,2, 3, 4, 5, and 6 respectively.

Proof. For simplicity we drop the superscript on g. We differentiate

the identity (4) and then set \¡zp=t,. After a few minor steps we find that



1972] COEFFICIENTS  FOR  THE  AREA  THEOREM 441

with ^_!=1. The power series for/,/', and G transform (15) into

(16) (f«fl.C") (Ïgnv-li")   =   (S«»«") (SO   - "jOg^lC").

For fixed integer «_1 we equate coefficients of £"+1 in (16) and find

n

(17) 2 (" -  k +  kP)an+l-kgkp-l = 0-
¡fc=0

Since Oj=l, we can solve (17) for gn9^v This gives

,    n-l

(18) gn„_i =- — y^(n -k + kp)an+x_kgkp_x-
"P *-«

Now, equation (18) is a recursion formula that allows us to compute

£„„_! from the ones with smaller index, and as such determines the

sequence of coefficients gm9-x in a unique manner. Consequently, in order

to prove Theorem 1, it is sufficient to show that for each index n the

coefficients gnjl-i defined by equation (14) do indeed satisfy (18). Again

it is an easy matter to check that if we set «= 1, 2, 3, 4, 5, and 6 in (18) this

formula does give the first six coefficients already listed.

As already indicated we replace oB+1_t by b„_k. Then (18) becomes

< «—i

(19) gnv_i = - — 2 (» - k + kP)°n-icgkv-i-

We proceed by induction. That is, we assume that for each k—l, 2, • • • ,

n-l,

nm v     _yi-rMP,j-i)b?b?---bk
(20) gfcp-i = 2, —

LU
fk

p'rx\r2l- ■   rk\

where _/»rj+rt+' ' "+'»■ and the sum is over S(k) the set of all non-

negative Avtuples (r1? r2, • • • , rk) for which ri + 2r2 + - • -+krk=k. Now

if k<n, it does no harm to enlarge the A-tuple to an «-tuple by adjoining

a suitable number of zeros. On the one hand any solution of

(21) rx + 2r2 + • • • + nr„ = k,       k < n,

in nonnegative integers must give r¿=0, if i=k+l, k+2. • ■ • , n. On the

other hand the inclusion of the factors fy/rA in (20) causes no harm

because for i=k+l, k + 2, • ■ ■ , n these factors are 1. Consequently (20)

can be replaced by

(22) gkv_i - I _,.,,,....-
pV,!r2!
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where k^n, y'=r,-(-r2-|-- • ••+-/•„, and the sum is over the set S(k) of all

nonnegative integer solutions of (21). We use (22) in the right side of (19).

Then for the right side R, we have

(23) R =       1  Y Y{~iy(" ~ k + kp)y(P,J ~ 1)fr"-*W " " ' b»

npk=os<k) PJrilri\ ■ • ' rn\

Now let isx, s2, ■ ■ • , sn) be any fixed «-tuple in Sin), so that

« n

(24) 2 isi = ">        2 s¿ " m-
¿=1 ¿=1

We are to determine the coefficient C of b{lb'£- • -bsnn in (23). This coeffi-

cient may arise from combining several terms from the sum and in fact

such terms arise if and only if bn_kbTxlbr2i- • ■brnn=bl1b$2*- • -bnn. To be

specific let a be an index for which sa^.l, and let r(=s( if i^a, and let

ra=sx— 1. For this fixed a, we have y'=2r=i rt—m~ 1- 1° (23) we set

n—k=a.. If A is the set of a for which J^O, then

(25) c=_iy (-ir-1(a + («-a)p)y(p,m-2)

Inserting the factor sx in the numerator and denominator of (25) we have

c _      (-l)"s.(g + jn- x)p)yjp, m-2)

„A npmsAs2l---snl

(26) (-DmyQ>, m - 2) v   ,    , ,        , .
= --—-' > s^a + (« - a)p).

But if ¿„=0, the corresponding term in the sum is zero, hence (using (24))

(-\)my(p, m -2) i,       , .

np^ls,! • • • sB! £

(-l)-V(p, m - 2),
(27) =-——- (n + npm - pn)

npms1\s2\ ■ ■ -5„!

Ç-ir^m-2)..        n    L1.     (-l)>(p,m-l)
=-((m — \)p + 1) =- .

p^As.l-'-sJ pmsAs2l---sa\

But this is precisely the coefficient of b[lbs22- ■ -bnn required in formula (14).

Since the argument holds for each fixed (j,, s2, • ■ ■ , sn) this completes

the proof of Theorem 1.
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3. Remarks. Although the formula for £„„_! was derived for p a

positive integer, and it was assumed that/fz) is univalent in |z|<l, the

formula is independent of both of these assumptions. The only require-

ment on/(z) is that/(z) have a simple zero at z=0 and/'(0)=l. The

power series (4) for G(z) will converge for ¡zj>./?<, where R0=l¡r0 and r0

is the modulus of the smallest zero of/(z)/z. Further/? may be any integer

positive or negative, as long as p^O. We can obtain numerical checks

on the formula, and deduce various identities by selecting special values

for p and special functions. For example if p= — 1, then G(z)=f(z).

This explains the presence of the factor p+l in every term except the

term — ajp in (14).

Suppose that/>=— 2. Then

(28) G(z) = (f(z2)f2 = z + f c2K+1z2n+1,
n=l

and (14) gives

(29Ï     c      -lfl      4-     T     (-ir+1(2m-3)!a2V3'---aIr+t
(29) c2n+l-    an+x+     2 2«~Vm - 2Vr lr » - - - r t      '

í s<n);m>i     ¿       (m — ¿)\rx\r2:       rn\

a formula for the coefficients in the square root of a power series.

The case p=l gives a formula for the reciprocal of a power series.

Thus if

(30) g(z) - -f- « - + J rfn2B,

then for n_T.

(3D 4-1«2^irm!û?a?-
r ir 'Sin) rl-r2-

It would be convenient to have a formula that would give the number

of elements in the set S(n). However, this is too much to expect because

this number is p(n), the number of unrestricted partitions of«. The func-

tion p(n) has been the subject of intensive research since the days of Euler,

and although much is known [6], [7], a simple formula for p(n) has not

been found and it is doubtful if such a formula exists. Many of the proper-

ties of p(n) follow from the relation

(32) -r-^-= 1+5 p(n)zn.
(1 - z)(l - z2)(l - z3)(l - z4) • • • ti

Values of p(n) have been computed for «_ 1000, and may be found in the

Royal Society Mathematics Tables, vol. 4, Cambridge Univ. Press,

London, 1958, pp. 118-121.
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