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COHERENCE OF POLYNOMIAL RINGS OVER
SEMISIMPLE ALGEBRAIC ALGEBRAS

ANDREW  B.  CARSON1

Abstract. It is shown that polynomial rings in finitely or

infinitely many central indeterminates, over a commutative alge-

braic algebra without nilpotent elements, are coherent. If the

coefficient ring is algebraic over the real numbers, then the com-

mutativity assumption, above, may be dropped.

In this paper all rings have identity, all modules are unital, and all ring

homomorphisms preserve the identity.

Definition 1. A ring R is left coherent if, for each finitely generated

left ideal I in R, there exists an exact sequence of left .R-modules

0-+K-+F^I-^0

such that F and K are finitely generated and F is free.

Right coherent rings may be similarly defined. The concept of a coherent

ring was introduced by Chase in [4]. He showed, in [4, Theorem 2.1],

that a ring R is left coherent if and only if the direct product of any family

of flat right ^-modules is flat. As left Noetherian rings are clearly left

coherent, this suggests that left coherent rings are, at least with respect

to homological properties, a generalization of left Noetherian rings. This

raises the following question: If R is an arbitrary left coherent ring, is the

polynomial ring R[Z] left coherent too? Soublin, in [10], answered this

question in the negative, even for commutative R. However, he showed in

[9, Theorems 21 and 22] that if R is commutative and von Neumann

regular (i.e. for each r e R there exists r' e R such that rr'r=r), then R[Z]

is coherent and its finitely generated ideals are principal.

In this paper we prove the following result:

Theorem. Let A be a central algebraic algebra, without nilpotent

elements, over some field L. Suppose that at least one of the following two
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hypothesis is satisfied:

(a) A is commutative,

(ß) L is the field of real numbers.

Then the polynomial ring A[{ZA] is left and right coherent, for any finite

or infinite set {ZA of central indeterminates.   |

The above meanings for A, L, and {ZA are retained throughout this

paper. By [1, Theorems 3.2 and 3.3], A is von Neumann regular. The

proof of the above theorem requires the following lemmas and proposi-

tions.

Proposition 1.   Let R be a ring. For r e R let (0:r) denote {s e R:sr=0}.

Then R is left coherent if and only if
(i) for each r e R, (0:r) is finitely generated as a left ideal in R,

(ii) the intersection of any two finitely generated left ideals in R is again

finitely generated.

Proposition 2. Let {RJ be a directed system of left coherent rings such

that, when tx^ß, Rß is flat as a right Rx-module. Then the direct limit of

{RA is a left coherent ring.

Definition 2. Let R be a subring of the ring S. Then S is faithfully

right flat over R if

(i) S is flat as a right .R-module,

(ii) if M is a left R-module such that S ®R M=0, then M=0.

Proposition 3. Let Rbea subring of the left coherent ring S, such that S

is faithfully right flat over R. Then R is a left coherent ring.

Proposition 1 is part of [4, Theorem 2.2]. Proposition 2 is from [2,

p. 63, Example 12]. Proposition 3 is [5, Corollary 2.1].

Notation, (i) We recall that a topological space is Boolean if it is

compact, Hausdorff, and totally disconnected. A subset of a topological

space X is clopen if it is both open and closed in X.

(ii) For any ring R and Boolean space X, let ^(X, R) denote the ring

of all continuous functions from X to R, where R has the discrete topology.

In other words, ^(X, R) is the ring of all locally constant functions from

X to R. For/e <%(X, R) let ker(/) denote {x e X:f(x)=0}. Clearly ker(/)

is clopen in X.

(iii) If / is a left ideal in %(X, R) and xeX, let Ix denote {f(x):fel}.

Clearly Ix is a left ideal in R. It is easy to see, where J is also a left ideal in

%(X,R), that (Ir\J)x=IxnJx.

(iv) If A is commutative let F denote the algebraic closure of L. Other-

wise let F denote the real quaternions.

Our results hinge upon the following topological representation of A.
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Proposition 4.    There is an embedding

A -* V{X, F),

for some Boolean space X.

Proof. If ^4 is commutative this is contained in [1, Theorem 6.1]. An

alternate proof, if A is commutative, and the noncommutative case, occur

in [3, Theorem 3.4 and concluding remark (d)].   |

Notation. Let B denote the ring ^(X, F) from Proposition 4. Let

p^.1 be an integer. Let T denote the polynomial ring F[ZT, • • • ,ZV].

Clearly

B[Zx,---,Zp\ç^<ë(X,T).

Lemma 1.    The ring B\ZX, • • • , ZP] is left coherent.

Proof. We shall use Proposition 1 to show that ^(X, T) is left

coherent.

First let/be an arbitrary element in ^(X, T). Define a map e:X->-T by

e(x)=l when xeker(f) and e(x)=0 when x^ker(f). The map e is

continuous since ker(/) is clopen in X. Clearly e generates (0:/).

Second, let / and J be two finitely generated left ideals in ^(X, T).

Suppose that x e X. Since elements of ^(X, T) are locally constant func-

tions, there exists a neighborhood Nx of x such that, for y e Nx, Iy=Ix

and Jy=Jx. Since T is left Noetherian, IXC\JX can be generated, for some

integer n(x)^l, by elements tx(x), ■ ■ • , tn(x)(x) of T. Since {Nx:x e X} is

an open cover of the Boolean space X, there is for some integer m^.1, by

[8, p. 12], a family {V3,: 1 ̂ j^m} of clopen subsets of X such that

(a) (jf=x(V7)=X,
(b) ViC\Vj=0 ififtj,

(c) for eachy, where l^j^m, there exists x(j) e X such that VjÇNxij).

Let n = sup{n(x(j)):l^j^.m}. Whenever n(x(j))<i^n set ti(x(j))=0.

For each i, where 1^/^m, define the map h{:X-*T by hi(x)=ti(x(j))

where x e V¡. In view of (a)-(c) the A¿ are well defined. They are in

<$iX, T) since the Vj are clopen. Let H be the ideal in <ß(X, T) generated

by {hj'A^i^n}. By construction il nJ)x=IxC\Jx=Hx for each x e X. This

establishes, via a compactness argument similar to the one given above,

that IC\J=H. Hence I(~\J is finitely generated. The lemma now follows

from Proposition 1.

In view of Proposition 3 we could now establish that A [Zx, • • • , Zv] is

left coherent by showing that B[Zlt ■ ■ ■ , Z„] is faithfully right flat over

A[Zx,---,Zv].

Lemma 2.    The ring B is faithfully right flat over A.
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Proof. It is established in [1, Theorems 3.2 and 3.3] that A is a von

Neumann regular ring. By [7, Proposition 4], such rings have the property

that all of their modules, left and right, are flat. In particular, B is flat as

a right .¿-module.

Let M be a left ^-module. Suppose that B ®A M=0. Then, using the

flatness of M as a left ^-module, we have

M^ A ®A M çz B ®A M = 0.

Thus M=0.    |

Lemma 3. Suppose that the ring S is faithfully right flat over the subring

R. Then S[Z] is faithfully right flat over R[Z].

Proof.   First note that, as left S-modules, S[Z]^S ®R R[Z].

Next note that, for any left S[Z]-module M, there are the following

left 5-module isomorphisms:

S[Z] ®RlZi M^S®R R[Z] ®RlZi M^S®RM.

Thus, for any left >S[Z]-modules M and A^ and homomorphism/: M^>-N,

the following diagram is commutative and its columns are isomorphisms,

where/' and/* are natural maps induced by/:

f':S®RM-> S®RN

I I
f*:S[Z] ®mzi M-> S[Z] ®RlZl N.

Since S is faithfully right flat over R it follows that if/is a mono-

morphism, then so are/' and (by the diagram)/*. Thus S[Z] is a flat

right R[Z]-module. Similarly, if S[Z] ®RiZl M=0, then S ®R M=0 so

that M=0.   |

Lemma 4.    The ring A [Zx, • ■ ■ , Zv] is left coherent.

Proof. It follows from Lemma 2 and p applications of Lemma 3,

that B[Zx, ••• ,ZV] is faithfully right flat over A[ZX,---,Z¿. The

result now follows from Lemma 1 and Proposition 3.    |

Theorem. Let {ZA be any set (finite or infinite) of central indeter-

mtnates. Then A [{ZA} is left coherent.

Proof. The family {A [Zx, • ■ ■ , Z„] :n= 1 and {Zlt ■■■ , Zn}c{ZA} is

directed under inclusion. Clearly

lim(A[Zx,---,Zn])^A[{ZA].

The theorem now follows from Lemma 4 and Proposition 2.
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Remark. The definition of a nilpotent element is left-right symmetric.

Thus A [{ZA] is also a right coherent ring.

Corollary. Suppose that R is a ring such that, for each r e R, there

is an integer m(r)^.2 satisfying

(*) rmW) = r.

Then R[{ZX}] is a commutative (left) coherent ring, for any finite or infinite

set {ZA of central indeterminates.

Proof. It is a well-known result, due to Jacobson, that R is commuta-

tive. As in [8, Corollary 12.5] there exists a finite set of prime integers

{px, • • •, pn} and a ring direct sum decomposition of R,

R^Ri®---®R„,

such that each R¿ has characteristic j?¿. Thus, as each R¿ satisfies (*), it is

an algebraic algebra without nilpotent elements over the field with p¡

elements. Hence Ri[{ZA] is left coherent, for l—^—jn. Clearly

R[{ZA]^Ri[{ZA]®---®Rn[{ZA}.

The result now follows from [6, Corollary 2.1] which states that a

finite direct product of left coherent rings is again left coherent.
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