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ON THE LOCALIZATION OF RECTANGULAR PARTIAL
SUMS  FOR  MULTD7LE FOURIER  SERIES

FON-CHE LIU1

Abstract. The question of the localization for rectangular

partial sums of the multiple Fourier series for functions of Sobolev

spaces is settled.

1. Introduction. As usual we denote by Tn the «-dimensional torus

(-7T, +tt]x- ■ -x(-7r, +tt], by Wl(fn)=Wl the Sobolev space of

functions which are absolutely continuous and periodic with period 2ît

on almost all those lines which are perpendicular to the hyperfaces of Tn

with the superscript and the subscript having their usual meanings.

Furthermore, we use W\(Tn) = W\ to denote the space of those

functions of W\ which vanish on the boundary of Tn. Naturally, we

overlook the difference between a function and the class of functions for

which it is a representative, and for convenience we always choose the

representation functions as described above.

Goffman and Liu have established in [2] that the square partial sum

has the localization property for W\ if/>_«— 1 that for each p<n— 1 there

is an/e W\ which does not have the localization property, and that there

is an everywhere differentiable function on T2 for which the localization

property fails. It is also shown in [2] that the rectangular partial sum

does not have the localization property for the space \V\ if p=n—1.

Our purpose in this note is to show that the localization property does

hold for the rectangular partial sum if p>n— 1 and therefore settle

completely the question of localization for the rectangular partial sums

of Fourier series so far as the Sobolev space W\ is concerned. Regarding

almost everywhere convergence for rectangular sums, it was shown by

Cesari [1], in contrast to our results, that almost everywhere convergence

holds for W\, for «=2, and for W\,p>\, for «>2. It seems accordingly

that Cesari's work deserves more attention than it has received.
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For our purpose, we consider in §2 the estimates of the Dirichlet

integrals of Lip. a functions on Tn over subintervals of Tn. As a con-

sequence we obtain the uniform convergence for the rectangular partial

sums of functions in W\, p>n. It has been shown in [7] that the Dini-

Lipschitz theorem holds on T2 for the rectangular partial sum. Since the

method of the proof in [7] is unnecessarily complicated and it is not clear

that the method employed there can be applied to the higher dimensional

cases, we will indicate at the appropriate place that the corresponding

theorem in T„ actually follows along the lines of the arguments in §2.

2. Dirichlet integrals and uniform convergence. For convenience we

shall use the following notations : Capital letters X, Y, ■ ■ ■ are points in

Rk, k—\, 2, ■ ■ ■ , small letters x, y, • • • are real numbers; if X=

(xi, ••• , xn), then A3 = (xx, • • • , x}), Xj = (xj±x, ■ • • , x J and dX=

dxx • ■ • dxn = (dxx ■ ■ ■ dxj)(dxj+x ■ • ■ dxn)=dX¡ dX¡; if J=(jx, ■ ■ ■ ,jk) is a

^-dimensional lattice point with positive components, then jj=

max{;l5 • • • ,jk}, and Dj(Y)=Dh(yx)-Dh(y2) • • • D^(yk) is the corre-

sponding multiple Dirichlet kernel, where Dj(y)=Tr~1{sin(j+%)yj2 sin %y).

Theorem 1.   Iff is a Lip. a function on Tn, a>0, and if

I = [-ax, +ax] X [-a2, +a2] X ■■■ x [-an, +an] <= T„,

then

n-l

i

{f(X+Y)-f(X)}Dj(Y)dY = c 1/1^20^-noogj-A,' Jk'
k=0 l=k+l

where \f\L.x is the Lip. a norm of fon Tn and C is a constant which depends

only on ax, ■ ■ ■ , an.

Proof.   Write

f(X + Y) -f(X) = J {fiXk, (Xk + Yk)~) -f(Xk+x, (Xk+X + Yk+X)-)}
k=0

k=0

where (X0, (X0+ Y0)~)=X+ Y and (Xn, (Xn+ Yn)~)=X.

Obviously, by rearranging the variables if necessary, we may assume

without loss of generality that/1=^ •  ^y',, i.e.jjk=jk+x, k=0, • • • ,n—l.

Now

I \{f(X+Y)-f(X)}Dj(Y) ¿2 I (<f>k(X,Y)Dj(Y)dY s^Ä*.
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< A

-/(** **«> (xm + yt+1)~)} ö/n dy

Can CaM       i"ot+1 _

{/(4%i + yw,(IWTyi+1)  )
J-an •'-li + 2     »-Ot+1

- f(Xk, xk+1, (X^Y^i)-)} D/t+10Wi) ^+1

X i"*- • • ¡aiDJt(Yk) dYk DJk+l(Yk+1) dYk+:
J—ak        J—a2

f«, /*«*+> r fak+l _

{f(Xk, xk+1 + yk+x, (Xk+X + 7,+1)   )
J-an       J-ak+iLJ-aic+i

- f(Xk, xk+x, (Xk+i + Yk+X)~~)} D^O^i) í/jVh!

X Dji+1(F,+1)dFft+1

= A' |/|£,J^ logÀ+1      • ■ ■ \Djk+i(Yk+x)\ dYk+x
J-a„       J-ak+2

uc\f\L,x(nù-*f[(\ogil),

where the last two steps are familiar in the 1-dimensional case (see

[8, pp. 62-64]).    Q.E.D.

Theorem 2. Iff e W\, p>n, then the rectangular partial sums of the

Fourier series of f converge uniformly to f on Tn.

Proof. It is known that if/e W\, p>n, then /is a Lip. (I —(nip))

function (see [5, p. 83]). Therefore Theorem 2 follows from Theorem 1

with ax = - ■ ■=an = TT.    Q.E.D.

o ,

Corollary. If fe Wp and p>n¡l, then the rectangular partial sums

of the Fourier series of f converges uniformly to f on T„.

o 1

Proof. By a well-known lemma of Sobolev (see [6] or [5]) feWq,

q>n, if feWlv, p>njl. Therefore the corollary follows readily from
Theorem 2.

For results which are similar to the corollary for the spherical sum-

mation method see [3] and [4].

As far as uniform convergence is concerned, it is clear that the
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following theorem which is the «-dimensional analogue of the Dini-

Lipschitz theorem can be proved along the lines of arguments in the proof

for Theorem 1.

Theorem 3. Let f be continuous and periodic on Tn and let w(t) be the

modulus of continuity of f If w(/) = o(log (ljt))~n, then the rectangular

partial sums of the Fourier series off converge uniformly to fon Tn.

3. Localization. Now let us turn to the questions of localization. In

view of the application to convergence questions we put the localization

principle in the following form

Theorem 4. Let Tbn = {Xe T^maxilxjl, ■ • ■ , \xn\}^b}, 0<b<rr. If

feWl,p>n—l, then

lim       i f(X + Y) Dj(Y)dY =0

uniformly in X e Tn.

Proof. First of all, if/e W\, then for almost all yiy gv.(Y{_x, F¿)

=f(Yi_x,yi, Yt) is a function in W\(Tn_x), i=\, ■ • ■ , n. For these y¡,

if/>>«—1, gy. is a Lip. (1 — (n— l)jp) function on Tn_x with its

Lip. (l-(n-l))p) norm bounded by C \\gyi\\lAn_i}, where ||s„.||£,,„_!, is

the Wl-norm of gy. on Tn_x and C is a constant which depends only on

P, (n-l), and J^i (see [5, p. 83]).

Next,

f f(X + Y) Dj(Y) dY = f        f       f(X + Y) Dj(Y) dY
JTr, JT„-1 J|vi|>&

(*) +í       í f        f(X+Y)Dj(Y)dY

+ ••+[ f •••[       f(X+Y)Dj(Y)dY.
•/|if„|Sb J|ï„_i|<î)       •/!!/! I <b

We need only estimate the first term on the right-hand side of (*), the

estimates for the other terms being similar. In the following we shall use

J' for Jx and write J' = (j{,ji, ■ • ■ ,j'n^i) where ji=jk+x, k=l, • • • ,n-l.

JT»-i Jm^'
f(X + Y) Dj(Y) dY

= Í       f        {f(X +Y)- f(xx + yx, Xx)} Dj(Y) dY

+ Í       Í        f(xx + yi,Xi)Dj(Y)dY
JTn-i J\vi\

= Rx + R2,
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where

(A \  R* = í    Í   {^Xi + y» ̂  + yi)_) - /(* + *• Ji)}
(Ai) •/|»1|Si>./zv1

and

(A2) 7v2 = f       /(xx + yx, Xx) Dh(yJ dyx.

In view of the remarks in the first paragraph of the proof and by apply-

ing Theorem 1 with « replaced by («—1) we have, for almost all yx,

L{f(xi + yx, Xx + Yx)-f(xx + yi, Xx)}Dj.(Yi)dYx
1

=    f      {g.l+yl(xi+yi)-gKl+y1(^i)}DAYx)dYx
J^n-1

= C||g,1+ïl||1p.(n-i)SOjt0(n-1,/P- fi (log;;),
k=0 l=k+l

where C is a constant depending only on 7?, («—1), and Tn_x.

Consequently, from (Ax) we have

l*il = HSW("-1)/P- fllogji) -(2^-
" >t=0 l=k+l I

i n—2 ji—1

-1)/P    '"Ilk»,
t-fc+1

and therefore Rx-+0 uniformly in X asjx, ■ • • ,y'n—»co.

Finally, we show that 7?2->-0 uniformly in Xasjx—>-cc. Let e>0 be given,

choose <5>0 such that

(A,) CO)«--1"*. II/IIK« • á1-("-1)/P • b-1 < e\2,

where C is the constant chosen previously in the proof. Let Zx, Z2, ■ ■ ■ , ZN

be points of Tn_x such that any point of Tn_x will be within the <5-neigh-

borhood of at least one of Zx, Z2,--,ZN and such that

(A4) lim   f       f(xi + yi,Zl)DJ1(y1)dy1 = 0
5,-»00   Jll/^Sil

uniformly in xx for /= 1, • • • , N. That this can be done is obvious from

the Fubini theorem and the 1-dimensional localization principle. Now

let X be any point of Tn. There is / with 1 _/_ N such that

(A5) |Z, -Xi\<ô

where by |A| we mean the euclidean norm of X in the corresponding
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appropriate space. Write

K. = Í       {f(x1 + yx, Xx) - f(xx + yx, Z¡)} Dh(yx) dyx
Jlvjat,

+ Í        f(xx + yx, Z,) Dh(yx) dyx
J\Vl\ib

(A6)

= R2 + R,

That |/?'á|<£/2 ifj\ is sufficiently large and independent of A follows from

(A4). We shall have shown that \R2\<e for sufficiently large jx and inde-

pendent of A if we show that \R'2\<ej2 for all^. As pointed out in the first

paragraph of the proof, for almost all yx, the following inequality holds

\f(xx + yx, Xi) -f(xi + yi, Z,)| ^ C \\gXl+Vl\\PAn-X) I *i ~ Z„
|l-(n-l)/P.

T> -»L/ —J\*l T yi,^D\ = ^ IlSsj+ïilIP.tn-l) 1^1 — '-I

therefore

\Rk\ ú f       l/(xi + y» Xx) - f(xx + yx, Z,)| ■ \DH(yd\ dyx
J|»l|ä6

^ I fl/(*i + yi, *i) -/(*i + yi. z.)l ¿A

= £ P«-)«^"* • I/I1,.. - |Ii - Zl1-'«-1»^ < J ,
b 2

by (A3), (A5), and the Holder inequality.   Q.E.D.
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