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THE  BRAUER  GROUP  OF  A  COMPACT HAUSDORFF

SPACE AND «-HOMOGENEOUS C-ALGEBRAS1

ROGER  HOWE

Abstract. The structure of all «-homogeneous C*-algebras

with a given compact Hausdorft space X as maximal ideal space is

looked at from a cohomological standpoint. Such algebras are

matrix algebra bundles over X, and by means of fibrewise tensor

products, a group, B<X), analogous to the Brauer group of field

theory, is constructed. A partial cohomological description of this

group is given. Projective representations of finite groups are used

to provide examples where B(X) is precisely computable and non-

trivial.

A C*-algebra A is called homogeneous of degree n (or «-homogeneous)

if all of its irreducible representations are of degree n. Though such

algebras do not occur often "in nature", they are of some theoretical

interest since they are the simplest noncommutative C*-algebras, and

indicate the kinds of phenomena which one may expect to occur for more

general algebras (particularly if one considers their subalgebras) while

remaining free of any taint of the various pathologies of the general case.

They also have some aesthetic appeal.

The basic structure theorem for «-homogeneous C*-algebras was

established by J. M. G. Fell [3], and says:

Theorem. Let A be an n-homogeneous C*-algebra. Then the primitive

ideal space X of A is a locally compact Hausdorff space, and if A has an

identity, then X is compact. Moreover A is naturally *-isomorphic to the

algebra of continuous sections of an nxn matrix-algebra bundle over X.

By an «x« matrix-algebra bundle, we understand a vector bundle of

dimension n2, such that the fibres also have the structure of the algebra

Mn(C) (with the usual C* norm). We will be more technical in a minute.

The above theorem is a natural generalization of the theorem of Gelfand-

Naimark [2], which asserts that a commutative C*-algebra is * isomorphic
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to the continuous functions on its (Hausdorff, locally compact) maximal

ideal space. Continuous functions may be regarded as sections of the

trivial line bundle. Analogously, we have, for any locally compact

Hausdorff space X, the algebra of continuous M„(C)-valued functions,

and this is an «-homogeneous C*-algebra. Now, however, it is only one of

several possibilities, for in Fell's theorem, nontrivial bundles definitely

occur. Thus one may ask, for a given locally compact Hausdorff space X,

what are the «-homogeneous C*-algebras having X as maximal ideal

space? This question is not considered in detail by Fell, and, indeed, it

leads into very complicated questions in nonabelian cohomology, so that

one may despair of an answer in general. However, one may take a

different point of view, provided by algebraic topology, and proceed to

stabilize, homologize, linearize, and generally vastly simplify the problem,

and still obtain some interesting information. It is this procedure we will

expose in this note. It leads in particular to a natural analogue of the

Brauer group of a field (or ring) for a compact Hausdorff space, and it has

some connections with group representations. We also remark that the

considerations here are closely related to those in [1], although the flavor is

considerably different.

From now on, we will take X compact. An M„(C)-bundle E over A' is a

locally trivial fibre bundle over X, whose fibres have the structure of Mn(C).

Thus if p:E—*X is the projection map, then we may find open subsets

{/¿c x, i= 1, • • • , n, such that X= (J™=1 [/,-, and such that there are fibre-

preserving maps d^p^'U^-^-UiX M„(C), such that </í-a'ri:(tr<nC/í)x

Mn(C)-*(U¡nUi)xMn(C) is of the form (x, T)-*(x, Au(x)(T)), where

Au(x) is an automorphism of Mn(C). The Atj's are called transition

functions and satisfy the (noncommutative) cocycle relation AikAu=Aik

and Aa=Ajl. We recall that to obtain an arbitrary vector bundle over X,

you replace M„(C) by C" (m arbitrary) and let Atj be any linear iso-

morphism of C".

Now we consider the collection of all (isomorphism classes of) matrix

bundles of arbitrary degree over X. Call this M(X). M(X) has a natural

commutative semigroup structure, the multiplication being fibrewise

tensor product. In terms of the local trivializations above, if Ex is an

M„(C) bundle, with transition functions Ai{, and E2 is an M,(C) bundle

with transition functions Bi}, then EX®E2 is an Mnl(C)~Mn(C)®M}(C)

bundle, with transition functions Aij®Bi¡.

Now there is a distinguished subsemigroup SM(X) of M(X), consisting

of matrix bundles of the form V®V*, where V is an arbitrary complex

vector bundle. That is, the isomorphism W®l¥*~Hom(rV, W) is well

known for any vector space W, and if the transition functions for V are

Ti}, the transition functions for V* are F,*"1, where * denotes adjoints.
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Thus the transition functions of V®V* are T^Tff1, which are auto-

morphisms for the algebra structures on the overlapping trivializations.

Proposition 1. The quotient M(X)/SM(X) is a group. If EeM(X),

then left multiplication ofE on itself defines an embedding / : F—>-Hom(F, E)=

E®E*. Then the commutant of i(E) in E®E* is E*, the opposed algebra,

which is E acting on itself by right multiplication. E* is then an inverse for E

in M(X)/SM(X).

The proof is already contained in the statement. In view of the evident

analogy between M(X) and central simple algebras (over a field, or their

analogues over a ring), and between SM(X) and the split algebras (this

latter being particularly strong since the rise of algebraic A-theory), it

seems reasonable to write M(X)jSM(X)=B(X), and to call this the

Brauer group of A. It is a useful object since it gives you a hold on the more

"mysterious" part of M(X). Presumably SM(X) can be calculated, given a

sufficient knowledge of A(A).

As a corollary to Proposition 1, we note:

Corollary. Every E e M(X) may be embedded in an algebra of matrix

valued functions on X (identities are not necessarily preserved).

Proof. Proposition 1 shows F may be embedded in the Hom(F, V)

for some vector bundle V over A. Now for some large «, we may write

Cn—V® W, where W is another vector bundle, and Cn denotes the trivial

«-dimensional bundle. Then we may embed Hom(K, V) in Hom(C", Cn)

by extending Te Hom(F, V) to be zero on W.

The next proposition provides a partial cohomological description of

B(X), the analogue of the situation for fields. The argument is essentially

a direct limit over the low-dimensional cohomology exact sequence corre-

sponding to l->F-»£/n—>F£/„->-1, where Fis the circle, Un the «-dimen-

sional unitary group and PUn the projective unitary group. The arguments

are all quite standard, and are particularly closely related to [1].

We let âî be the group of roots of unity in C. Si has the discrete topology.

We have the natural injection ,#->F. Given a group G, Hl(X; G) will de-

note the Cech cohomology of the sheaf of continuous functions of A into

G. Then if G is discrete this is the usual Cech cohomology.

Proposition 2. There is a natural injection d: B(X)->H2(X; T). d(B(X))

is contained in the image of H2(X; Si) in H2(X; T). In particular 75(A) is a

torsion group. More specifically, if E e M(X) is an Mn(C)-bundle, then the

order of E in 73(A) divides n.

Proof. Let F e M(X), and let {U,} be an open covering of A, over each

member of which E is trivial. Let A{j be the transition functions. A tj(x) is an

automorphism of Mn(C), and all automorphisms of Mn(C) are inner.
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Thus there is, for each x, C¿í(x) e Mn(C), such that Aij(x)(T)=

C{j(x)TCij(x)r1, TeMn(C). C(j(x) is determined up to constant. If we

assume, as we may, that our F actually is a C*-algebra, then Atí(x) will be

a *-automorphism, and C„(x) may be taken to be unitary. If the ¡7/s are

contractible, or in any case, by shrinking them if necessary, we may assume

we have continuous functions Ctí: í7¿ní/3—>Un, such that conjugation by

Ctj gives Aj¡, as above. Since AjkAij=Aik, the Q/s satisfy the relation

QsAí=a¿rtAí., where a.ijk is a constant. Associating the product CklCjkCij

in two different ways yields the identity <xiik'xm = oLmoLijl, so that a.m is a

Cech 2-cocycle in the sheaf of F-valued functions. Now A{j is defined up to

a coboundary, that is, we may replace Ait with A'{j=BjAijBf1, where

7?¿ : U{-^Aut(Mn(C)) is a continuous function. Similarly C(j may be replaced

by ßtjCfj, where ßtj: UiCMJ^T is continuous. Either change only alters

0Lm by a coboundary (e.g., functions of the form ß7kßjkßij)- Thus, we may

associate to F a well defined cohomology class [a] in H2(X; T). Moreover

it is clear that [a] is precisely the obstruction to splitting E. For, if [a]

vanishes, we may alter <xm by a coboundary, to make <xijk=l. Then the

transition functions Cu define an «-dimensional vector bundle V, and

clearly E~V®V*. On the other hand if F splits, so that F~F®F*, then

taking the transition functions of F to be those derived from V, we get the

trivial cocycle, <xijk=\. Finally we observe that, according to the con-

struction of tensor products using transition functions, we may construct a

cocycle for EX®E2 equal to the product of cocycles from Ex and F2. Thus

our map d:B(X)^-H2(X; T), which we have shown to be injective, is also a

group homomorphism.

To prove the rest, we observe that, as C,-,-(x) is determined only up to a

constant, then we may, by shrinking the £/¿'s if necessary, suppose that

C,j(x) e SUn, the special unitary group. Then u.m e SUn, must be an «th

root of unity. It is therefore locally constant. Cutting things further if

necessary, we see am is in fact a Cech cocycle with values in the nth roots

of unity, and a fortiori in Si. In particular, the class represented by txijk

has order dividing «. This finishes Proposition 2.

We add some complements to Proposition 2. Following [1], we observe

that the exact sequence 0—>-Z—>-R—>-T—>-0 yields the cohomology sequence

7F(A; R)^H'(X; T^W+^X; Z)-+Hl+\X; R) which gives W(X; F)~

77,+1(A; Z) for ¡ = 1, since 77¿(A; Ä)=0 for i = l, since the sheaf of con-

tinuous real-valued functions is "soft". Thus, in particular 772(A; F)~

H3(X; Z), the latter being an ordinary Cech group. Thus

Corollary 1. 75(A) is isomorphic to a torsion subgroup ofH3(X; Z). In

particular, if H3(X; Z)=0 (or is torsion free) then every matrix bundle over

X is split. (Example: Tn.)
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Next, let 0i„a ^ be the nth roots of unity, and consider 0->^Bi>F^>

F—0 and the dual sequence O-'-Z^Z-»^,,-^. The first yields H*(X; F)_?^

H\X; T)-+Hi+1(X; 0tn)^Hi+1(X; T). The dual sequence results from the

isomorphism H'(X; T)~Hi+1(X; Z). This sequence gives

Corollary 2. IfW(X; T)~H2(X; Z)=0 (or if it is divisible) then i* :

H2(X; 01 n)-*H2(X; T) is injective. Hence H2(X; M)^H2(X; T) is infective,

and B(X) may be regarded as a subgroup of H2(X; 0t ).

Proof. We have the factorization 0¿n-+0l^>-T. If i*:H\X; 01 „)->

H\X; T) is injective, so is i*:H2(X; 02„)^H2(X; 01). Now H2(X; 01) is

the direct limit of the H2(X; 01,y s, and i*:H\X; 0¿)^H2(X; T) is the

corresponding direct limit of maps. If H2(X; 0t„)->-H2(X; 0t) is injec-

tive, then H2(X; 01) is just the union of the H2(X; 0¿n). Since each of these

is mapped injectively into H2(X; T), so is H2(X; 0t ).

In general, since 0¿~QjZ, we may compute the kernel of/* : H2(X; 0t)-+

H2(X; T) by the sequence O—Z^g^g/Z-^O, which gives H2(X; Z)j^

HZ(X; Q)e^H2(X; QjZ)^H\X; Z). The universal coefficient theorem

gives H2(X; Q)~H2(X; Z)®Q. We may thus recover Corollary 2, and

specify the kernel more exactly. We will explicitly mention the opposite

extreme from Corollary 2.

Corollary 3. IfH3(X; Z) is finitely generated, then B(X) is a subgroup

of the quotient H2(X; QjZ)jDH2(X; QjZ), where DH2 means the subgroup

of H2 consisting of divisible elements. In particular, B(X) is finite.

Proof. If HS(X; Z) is finitely generated, it contains no nontrivial

divisible subgroups. Hence DH2(X; QjZ) is certainly in the kernel of/* on

H2(X; QjZ), since the image of a divisible group is divisible. On the other

hand, H2(X; Q) is divisible always, and so for the same reason,

P(H2(X;QjZ))^DH2(X;QjZ). Then B(X) is a torsion subgroup of a

finitely generated group, hence finite.

Corollary 4. If X is a finite simplicial complex, then B(X) is a finite

group.

Proof.    Hl(X; Z) is then a finitely generated group.

There is an interesting class of examples of the foregoing where one can

be more precise. Suppose X is a finite simplicial complex, G a finitely

generated discrete group and Y a principal G-bundle over X. We assume

that 7rt(F)=0 for /^3. Then Y is the universal cover of X and ttx(X)~G.

In particular, if G has finite cohomological dimension, Y may be con-

tractible and X a K7rx space.

By virtue of our assumptions Hl(Y; Z)=0 for /5Í3, and Hl(X; Z) and

W(G; Z) are naturally isomorphic (Z being a trivial G module) for /5j3.
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(This is essentially folklore.) Similar statements hold for coefficients in g

or QjZ (= iM). Suppose p:G-*PSUn is a projective representation of G.

Then we can form E=(Mn(C)x Y)jG, in the usual way, and this will be a

matrix algebra bundle over X. Now the obstruction to lifting p to a bonafide

representation ß :G^-U„ is an element of H2(G; 01), the so-called Mackey

obstruction. It is clear from the construction of the isomorphism between

Hl(G; ) and H'(X; ) for /<3 that the corresponding class in H2(X; T) is

d(E). Thus one may calculate that B(X) in this case is a subgroup of

H2(G; 0t)jDH2(G; 01); namely the image of the group generated by the

Mackey obstructions.

Suppose now G is finite. Then DH2(G;0¿) = O, and every element of

H2(G; 01) is realizable as a Mackey obstruction. For, given a G H2(G; 01),

one may construct the corresponding central extension of G. Then

corresponding to the identity character on the center, one may find an

irreducible finite dimensional representation of the extended group. This

then defines a projective representation of G, with Mackey obstruction a.

We state this as our final result.

Proposition 3. If p: Y->X is a principal G bundle, for G finite, X, Y
finite complexes, and ir(( Y)=0for i<:3, then B(X)~H2(G; 01).

In particular this provides examples of nonsplit matrix bundles, and is

probably the situation which most approaches the classical case of fields.
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