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Abstract. Let w=f(z)=z+ 2«=2 a«z" be regu'ar and univalent

for |z|<l and map |z|<l onto a region which is starlike with

respect to w=0. If r0 denotes the radius of convexity of w=f(z),

do=min\ f(z)\ for |z|=r0, and d*=M\ß\ for f(z)?tß, then it has

been conjectured that dald*>2ß. It is shown here that d0ld*^.

0.380 • ■ • which improves the old estimate djd*^0.343 • • •. In

addition an upper bound for d* which depends on \a2\ is given.

1. Introduction.   Let S* denote the class of functions :

00

w=f(z) = z + 2anzn
n=2

which are regular and univalent for |z|<l and map |z|<l onto a region

which is starlike with respect to w=0. If r0 denotes the radius of convexity

of w=f(z), J0 = min |/(z)| for |z|=r0, and d*=inf \ß\ where f(z)^ß for

|z| < 1, then it has been conjectured that djd* ^2/3 [2], Recently it has been

shown that î/0/û?*^0.343 • • • [3]. In this paper we will show that djd*^.

0.380 • ■ •. It is no loss of generality to assume that a2=a^.O. If this is not

the case, then we replace w=f(z) with w=eief(e~l9z) where 0=arga2.

This transformation does not affect the value of either d0 or d*.

2. Preliminary estimates. The following theorem improves a result

appearing in [3].

Theorem 1.   Ifw=f(z) e S*, then

(1) d* ^ exp(-o/2)

for 0^a^2.
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Proof.    For a £ [0, 1] consider the function:

(2)

Since :

w = F(z) — z = z + aaz2 + 2 c„z".

zF'iz)/Fiz) = (1 - a) + a[z/'(z)//(z)],

w=Fiz) e S*; see [1, p. 221]. In [3], it is shown that d^ljil+aa) which

gives :

d* = d* = [d*]Ux ^ (2)1/a/(2 + «a)1/a.

Letting a=l/zz for zz=l, 2, 3, •• -, we obtain:

d* ^ lim [1 + (a/2)/n]-n = exp(-a/2).
n-* oo

The following almost immediate corollary will be useful later in this

paper.

Corollary 1.   Ifw=f(z) e S*, then

(3) idjr0r2 ^ exp(-¿zr0/4)

for 0^a^2.

Proof.   Let

a
z' +

n=3

Fiz) = z(/(z)/z)1/2 = z + -2 z2 + 2 dnz\

and

G(z) = z-ô^iroz) = z + -5 z2 + 2 ¿.rj-'z».

If a=l/2 in (2), we see that w=F(z)eS*. Therefore, iv=C7(z) is also in

the class S*. Therefore, by Theorem 1,

d*a = idolr0)m ^ exp(-ar0/4).

The following theorem enables us to obtain a lower bound for djd*.

Theorem 2.   // w=/(z) e S*, then

(4) dja* ^ 1 - (1 - roXdo/roY'2.

Proof.    Let z=g(w) denote the inverse function to  w=f(z).  The

function :

(5) K(0 = d*
g(d*0

(1 - e**g(d*0)

oo

= £ + 2 *.£"
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is regular and univalent for |£|<1 for all —tt<^<j>-^tt. By the classical

distortion theorem we obtain:

(6) roi = ¿-1    lg(fDI   , < -JL.
1(1 - e'*g(d*Q)\2 - (1 - ia)2

see [2, p. 227]. Suppose/(z0) = w0 where |z0|=r0 and |»v0| ==¿/0. If we let

l, = wjd*, c/>=argz0 and substitute into (6), we obtain:

d*-i[r0l(l - r0)2] ̂  (djd*)/(I - djd*)2

which is equivalent to (4).

3. Estimates for djd*.   Suppose w =/(z) £ S*. It is shown in [3] that

(7) |/(z)| ^ |z|/(l + a\z\ + \z\2)

and

(8) r0 > r0(a) = (a + (a2 + 32)1/2 - [2a2 + 2a(a2 + 32)1/2 + ló]1'2)^

which gives the sharp estimate:

(9) d0 ^ r0(a)¡(l + ar0(a) + r%a))

where equality is attained for the functions/(z)=z(l —az+z2)-1 for each a,

0^67^2. Inequality (8) taken with inequalities (3) and (4) gives the

following :

(10) djd* ^ 1 - (1 - r0(fl))exp(-flr0(a)/4) = EM

for 0^a^2. Inequality (9) taken with inequality (1) gives the following:

d r0(a)exPW2)      =

d*      1 + ar0(a) + r2(a)

for 0^a^2. The following two lemmas enable us to find a lower bound

for the quantity djd*.

Lemma 1.    The function Ex(a) decreases for 0^a5l2.

Proof.    Let

(12) H(rja)) = (1 - r0(a))exp(-flr0(a)/4).

Since E1(a)=l— H(r0(a)), it is sufficient to prove that H(r0(a)) increases

for 0^a^2. It is shown in [3] that

(13) 1 - ar0(a) - 6r\(a) - ar%a) + r&a) = 0

which enables us to solve for a. Doing this and replacing r0(a) with R
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in (12) we obtain:

HiR) = (1 - iv)exp[-(l/4)(l - 6R2 + #4)(1 + R2)-1].

Furthermore, it is also shown in [3] that r0(a) is monotone decreasing

for 0^a_2. From this we see that it would be sufficient to show that

HiR) decreases for r0(2)^i\^z-0(0) because the composition of two

decreasing functions is an increasing function. Taking the derivative of

HiR) we obtain :

H'iR) = -
1R + UR2 + 2R3 + R5 - R6

2(1 + R2)2

x exp
-(1 - 6R2 + R4)'

4(1 + R2)

Therefore, to show HiR) decreases it is sufficient to show

JiR) = 2-lR+ IIR2 + 2R3 + R5 - R* ^ 0

for O^R^l which follows because:

JiR) ^2-SR + SR2 + 3R2 + 2R3 + Rb - R«

^ 2(1 - 2R)2 + 3R2 + 2R3 + i?5(l - R) ^ 0.

Lemma 2.    The function E2ia) increases for l^a^2.

Proof.   If

(14) Fia) = r0(a)(l + ar0ia) + r»)"1,

then £2(a)=exp(a/2)F(a) and Fá(a)=exp(a/2)(F'(a) + -|F(a)). Therefore,

to show E2ia) increases it is sufficient to show F'(a) + \F(a)^.Q for 1^

a^2. Using (13) to solve for a and replacing r0(a) with R, we obtain:

F'(a) + \F(a) = |[(1 + 6Ä2 + R4)(l - R2)~3R']

+ [R/4(l + R2)il - R2)-2]
(15) 1 +R 2

4(1 - R2f

2     I      D<

2 i + 6R  +9R R' + Ril - R2)
il + R2)

where R'=r'0(a). We first note that (13) gives R'<0; see [3]. Since R=

r0(a) decreases with respect to a, R lies in the interval 1/45?./?^ 1/3. To

complete the proof, it is sufficient to show :

(16)       W(R) = 2(1 + 6R2 + Rl)(l + R2)-^' + R(l - R2) > 0,

for l/4^i?^l/3. In order to show (16) holds we observe:

(1 + 6R2 + R*)(l + R2)-1 = (1 + R2) + 4R2(l + R2)-1

^ (1 + 3-2) + 4-3-2(l + 3-2)-1 < 14/9



1972] THE  2/3  CONJECTURE FOR STARLIKE FUNCTIONS 421

and R(l - R2) > (1/4)(15/16). Therefore we have:

W(R) > 2(14/9)/?' + (1/4)(15/16),

and we see that W(R)>0 if /?'> —(135/1792). Hence, if

(17)       R' = R(l + R2)(4R3 - 3aR2 - 12R - a)-1 > -(1/14),

then we have W(R)>0 and the proof is complete. However, using the

fact that 4R3-3aR2-l2R-a<0, (17) is equivalent to:

14R(\ + R2) < -(4R3 - 3aR2 - 12/c - a)

which is equivalent to :

-18/?3 + 3aR2 - 2R + a > 0.

Recalling l^a^2, we have:

-18.R3 + 3R2 - 2R + 1 > ((1/3) - R)(ISR2 + 3R + R) > 0

because l/4^Ä<l/3.
Using Lemmas 1 and 2 we are now ready to prove our main theorem.

Theorem 3.   djd* ^0.380 •••.

Proof. We have E1(A)=E2(A) for ^4 = 1.060 • • • . From Lemma 1,

Ex(a) decreases for O^a^A, and from Lemma 2, E2(a) increases for

A^a<2. Therefore, we have d"0/<¿*^0.380
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