
proceedings of the
american mathematical society
Volume 35, No. 1, September 1972

QUASI-COTRIPLEABLE  CATEGORIES

ROBERT  C.   DAVIS

Abstract. A category is quasi-cotripleable over the category of

sets if it has all the properties of cotripleable categories except the

right adjoint to the forgetful functor. Problems involving such

categories are illustrated by categories of relational structures, and

by categories of sets acted on by a monoid with open homomor-

phisms for maps. A characterization is given in terms of generalized

operators and relations.

1. Introduction. In universal algebra, the natural object of study is a

category tripleable over the category if of sets. One would therefore

expect universal coalgebra to be the study of cotripleable categories. How-

ever, many natural constructions produce categories which are "almost"

cotripleable, except that the forgetful functor lacks a right adjoint. The

intent of this paper is thus to suggest the following class of categories as an

object of study.
Definition. A category si equipped with a faithful functor U:si^>-Sf

is quasi-cotripleable (QCT) if

(1) si has coequalizers and (infinite) coproducts;

(2) U preserves coequalizers and coproducts;

(3) the dual of Beck's precise tripleableness condition holds (see, for

example, [3] for an exposition). We shall express this condition by saying

that si "has split equalizers."

Clearly a QCT category is cotripleable iff U satisfies the cosolution-set

condition. As a first example of a QCT category which is not cotripleable

we may cite the category of topological spaces and continuous open maps,

see [5].

2. Relational structures. Let R be a binary relation symbol. There is a

one-to-one correspondence between relations R on a set A and functions

cn:A->-2A—PA, given by R(x,y) iffy e co(x). Let si be the category of sets

equipped with a binary relation, and homomorphisms/:/!-»-./? satisfying
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OJBf(a)=f((0Aa) (direct image) for all a in A. In terms of R the condition

on homomorphisms means: R(a,a') implies R(fa,fa'), and R(fa,b)

implies b—f(a) where R(a, a'). With the obvious forgetful functor, si is

QCT.

Theorem 1.    The category si is not cotripleable.

Proof. We show there is no cosolution-set for X={0, 1}. For each

ordinal a we define P"X by P°X= X, PX+1X=P(P*X). If a is a limit ordinal

we define P"X to be the direct limit ofPßX, ß<ca, under the system of maps

determined inductively by PßX--Pß+1X given by xy-*{x}. Let co be an arbi-

trarily large limit ordinal and define A to be the subset of n<r<aj ^"^con-

sisting of all sequences x=(xx)a<a] such that (1) for each a, xx e xa+x; and

(2) if a is a limit ordinal there is some /?<<x so that for /9<y<<55ja we

have xs=Py(xy), where/?* is the evident map in the directed system. This

set A can be arbitrarily large. Define/: /!->-X byf(x)=x0, and define R on

A by R(x, y) iff for each a, yx e xx+x.

Let g:A^>-B be a homomorphism such that g(x)=g(y) implies ^0=Jo>

and assume that g is not one-to-one. If g(x)=g(y) and x^y, there is a

least ß such that xß^yß. We may assume that x and y are chosen so that

this ß is the least possible. Then /MO, and by (2) ß is not a limit ordinal,

so ß— 1 exists. We may assume that xß^yß, and we can choose z in A such

that R(x, z) and zß_xe xß—yß. Since g is a homomorphism there must

exist w in A such that R(y, w) and g(z)=g(w). But zß_x^wß_x and this

contradicts the minimality of ß.    D

Many examples of QCT categories arise as subcategories of si'. Let P

be a first order sentence in the predicates R and =, and let si(P) be the

full subcategory of si whose objects are the models of P. We shall say

that P is admissible if si(P) is QCT. It appears to be an interesting and

difficult problem to characterize structurally the admissible sentences.

Thus, VxR(x, x) is admissible but the very similar sentence VxVyR(x, y)

is not admissible since it is not preserved under disjoint union.

If P is universal, then sé(P) has split equalizers. Thus, as a first ap-

proach to the problem, we shall show that a fairly large class of universal

sentences is admissible. However, an admissible sentence need not be

universal, as is shown by the example Vx3 \yR(x, y). It is also easy to see

that si(P) has coequalizers preserved by U if P is positive [2], but weaker

conditions are sufficient. Some restriction is necessary, since coequalizers

are not preserved if P is V* iR(x, x), or if P is the sentence stating that R

is an antisymmetric relation. Finally, P must be preserved by disjoint

union. Thus, P could be of the form A(xx, • • • , xn)=>B(xx, ■ • ■ ,xn)

where all x¡ actually occur in A and where the holding of A in a disjoint

union implies that all x¿ come from the same component. The latter will be
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true if A has the formR(xx, xix)aR(xx, x12)a- • -aR(xx, xXm)AR(xxl, xxxx)a

• • • , where the x's are all distinct. Such a formula asserts that R arranges

the x's into a tree diagram, so it will be called dendritic. The proof of the

following result is now routine.

Theorem 2. A sentence P is admissible, provided it is the universal

closure of an open formula of the form A(xx, ■ • • , xn)=>B(xx, ■ ■ ■ , xn)

where: (1) A is dendritic; (2) B is positive; (3) every variable occurring in B

also occurs in A.

3. Open homomorphisms. Let M be a monoid with identity element e

and A a left M-set. A subset of A will be called open if its complement is

closed under the action of M, and an AZ-homomorphism/:/!-«-./? will be

called open if it takes open sets to open sets (so in particular f(A) must be

open). Let Jt be the category of left M-sets and open homomorphisms.

Then Jt is a QCT category; it appears to be difficult to determine when

Jt is cotripleable. If M is a group then open sets are closed, every homo-

morphism is open, and Jt is cotripleable. We intend to show that Jt is

cotripleable when M is finite cyclic. In obtaining the cosolution sets it

clearly suffices to restrict attention to connected M-sets.

Lemma 1. Let M be commutative, A a connected M-set. If a, b e A then

there exist m, n in M such that ma=nb.

Proof. Define a relation ~ on A by a~ma for am A, m in M. Let

= be the equivalence relation on A generated by ~. Since A is connected,

a=b for all a, b in A. If b=ma we have ma—eb. Suppose by induction

that ma=nb and either è~c or c~¿>. If c~¿> then for some r in M, c=rb

and we have ma=(nr)c. If 6~c then b=rc and we have (rm)a=(rn)b =

n(rb) = nc.    D

Let M be finite cyclic; then M={e, a, a2, ■ ■ ■ , ar, ■ ■ • , a"+r-1} where

an+r==ar_ gy r^ p 20], K={ar, • • ■ , ff"+r-1} is a cyclic group of order n.

Hence if A is an A/-set then M acts like a group on the subset arA.

Lemma 2. If A is a connected M-set and M is finite cyclic, then

|orM|^|M|.

Proof. Let a, b e arA. By Lemma 1, we have asa=alb, and some ele-

ment am acts on arA as the inverse of a*. Hence b=ama'b=am^sa e Ma,

so we have arA = Ma and |o-M| = |A/o|^|Aí|.    D

Theorem 3. If M is finite cyclic, the category of M-sets and open

homomorphisms is cotripleable over the category of sets.

Proof. Let A be a connected A/-set and/:,4—►A'. We begin an in-

ductive process of identifying points of A — (arA) as follows. If a, b e A —

(oA), aa=ab, and f(a)=f(b), then identify a with b. Next, suppose

a, b e A — (arA), oa—ab,f(a)-=f(b), and the process has already been



46 R.   C.   DAVIS [September

applied to M As={x e A\a t Mx} and to M^b, except for a and b them-

selves. Suppose there exists a one-to-one function k from M~xa onto

M~lb such that f\x)=f(k(x)), and k(ox)=ak(x) for x^a, and k(a)—b.

Then we identify x with &(.*). Continue the process until A — (arA) is ex-

hausted. At the conclusion we will have an identification map g:A-*B

where\B\^.\MxXxP(X)x ■■■ xPr(X)\. By the nature of the construction

it is clear that g is an open homomorphism through which /"factors.    D

Example. Suppose M consists of e and an idempotent m. Define the

A/-set A = {a, b) by ma—mb=b. Then A is "almost" a terminal object in

that each M-set admits at most one open homomorphism into A. This

implies that the unique function A->{0} is a categorical monomorphism.

Hence monomorphisms in cotripleable categories need not be one-to-one!

4. A characterization theorem. The Lawvere-Linton theory of triples

and theories (see, for example, [3] or [7]), applied to the dual of if, yields

the result that every cotripleable category si can be constructed as follows.

There is a category 77 and a functor T: ¿f^-n- which is one-to-one on ob-

jects and preserves products and equalizers, si is equivalent to the category

of functors X.-tt-*."/' such that AT is representable. Thus, an object of si

is essentially a set A equipped, for each (o:n~>m in 77, with a function

(oA:nA-+mA', satisfying appropriate conditions; and f:A--B is a homo-

morphism in .ae* if m'(U];=ojAnf. I.e., fis a homomorphism if, for each

w:n-+m and h.B -n, we have coB(h)f=coA(hf):A->m. In principle, this

should give us a concept of theory for universal coalgebra exactly parallel

to the one in universal algebra. But in practice this is not quite true; if we

attempt to generate "free" theories we get coalgebra categories which are

are not cotripleable but which are QCT. Thus, it is the QCT categories

which turn out to have a natural description in terms of "operations

and relations."

In what follows we shall presume familiarity with [7]. Also it will be

necessary to manipulate proper classes, so we place ourselves in a set

theory containing one of the usual mechanisms for doing so, e.g. universes.

The category of sets is then an object of a category <ë of "classes" of

"large sets."

Theorem 4. A category si, equipped with a functor \J:si-^*Sf', is QCT

iff there is a class of operations (o:n-*m,for various sets n and m, subject to

equality of various compositions n-+m-^>-r and n—>p-^>r, such that .sé is

equivalent to the category of sets A equipped with operations o>A:n4—>-mA,

and of functions f: 4-*B satisfying coB(h)f=ojA(hf) for h:B-*n.

Proof. The proof that categories of the described form are QCT

consists of lengthy but straightforward verifications and is omitted. Sup-

pose that l¡:sJ -yff is QCT. Then the composition si-*^-*^ has a
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"coalgebraic closure," the category è% of coalgebras in <€ over the density

cotriple (G, s, ö). And á? can be described in terms of operations and

relations as described above; if V: ¡M^ê is the forgetful functor then 77- can

be obtained from the formula -n(n, m)=n.t.(nv, mv).

We claim that si is equivalent to the full subcategory of SS, whose

objects are the G-algebras whose underlying classes are sets. Once this is

shown, we need only observe that if A is a set, any w A : nA-^-mA is determined

by operations for which n and m are sets. Thus, let X be a C-algebra and

also a set. Then there is |:X-+GX such that ex£=lx and G(Ç)Ç=ôxÇ:

X—>-G2X. Here GX and G2X are colimits of large diagrams in si, and our

method will be to replace these large diagrams by small ones, whose co-

limits will be in si since si is QCT. For each x in X choose Ax in si, ax in

UAX, and/,: UAX-*X such that Pfx(ax)=Ç(x). Here, if/: UA-+X, Pf: UA^

GX comes from the construction of GX as a colimit. Let 3¡ be the category

whose objects are pairs (Ax,f) where/: UAX-+X, and a map cp:(Ax,f)^*

(Av,g) is q>:Ax->-Ay such thatfU(cp)= g. The diagram2-^-si, (Ax,f)\-*AX,

has a colimit D and there are induced maps of:Ax-+D. Let JT be the

category whose objects are pairs (Ax,f) where /: UAX-+UD and maps

defined as for &. The diagram X'-^si has a colimit K and there are in-

duced maps Tf:Ax-+K. We construct z:X-+D, s:D->X, t:K->-D, and d

and k: D->-K as follows. Let z(x) = afx(ax), saf=f, daf=T„ , kaf=rzt, and

tr0=g. Then we have all the conditions for a split equalizer diagram, zs=

tk, sz=\, td=\, except possibly dz=kz. For each x in X, ôxi(x)—

G(Ç)!;(x) holds in GX, and thus, by the construction of colimits, in order

that dz(x) = kz(x) should hold in K we must adjoin some finite number of

objects to the categories S> and Jf. We do this for each x and then redefine

d, k, etc. Then X becomes a split equalizer of d and k. Since si is QCT,

this implies that X is isomorphic to an object of si. It remains to be verified

that the inclusion SÍ-+S8 is full and faithful, but this follows by standard

arguments.    D

It is unclear how to fit the examples of §§2 and 3 into this framework.

At least, as an immediate consequence of Theorem 4, we can state that the

set-theoretic image of a homomorphism in a QCT category is always a

subobject. We conclude with an example showing that the same statement

is not true for inverse images. Let si be the category of sets equipped with a

single operation w:2—>-2, and functions/:/!—>B such that for each C^B,

f-hoB(C)=o>Af-\C). Let A={0, 1,2}, S={0, l},/(0)=/(l)=0,/(2)=l,
and (o7y=id. Then {0} is a subobject of B. If/is to be a homomorphism,

we must have coA(0)=0, œA({0, 1}) = {0}, coA({2}) = {l}, toA(A)-A. All

other values of 10A are arbitrary so we need only put co.£({O})=0,

w^({0, 2}) = {0) and then/-1({0})={0, 1} is not a subobject of A; the in-

clusion is not a homomorphism.
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