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A NEW PROOF  OF A  THEOREM  ON

QUASITRIANGULAR  OPERATORS

GLENN  R.   LUECKE

Abstract. P. R. Halmos has given a proof of the equivalence

of two definitions for quasitriangular operators. A short, elementary

proof of this fact is given here.

In his paper Quasitriangular operators [1], Halmos proved the equiva-

lence of the conditions (A0) and (A2) for operators A on Hilbert space

H (dimi/=co). An operator satisfying (A0) or (A,) is called quasitri-

angular. The proof that (A0) implies (A2) is trivial. However, Halmos

uses a three page proof to show that (A2) implies (A0). The following is a

short and completely elementary proof of this fact.

Operator A satisfies condition (A2) if there exists a sequence {£„} of

(orthogonal) projections of finite rank such that £„—>-/ (strong topology)

and \\AEn — £„/!£„¡|^-0. Operator A satisfies condition (A0) if for every

projection P of finite rank and for every £>0 there exists a finite rank

projection £^5 such that \\AE—EAE\\<e.

Theorem (Halmos). If A satisfies condition (A2), then A satisfies

condition (A0).

Proof. Use the notation above and let 0„ be the projection on £„(AQ,

where N=PiH). Let ¿><5>0 be given. Since dim N< oo and since Eng->g

for each geH, there exists «0 such that for all n^.n0, \\E„g—g\\<ô\\g\\

for all gGN. Let n>n0 and let/e£„(/V), ||/|| = l,/=£„g, g e N. Then

\\g\\u\\g-E„g\\ + \\Eng\\<ô}\g\\ + l so that HgH^(l-á)-1. Then

IIÖ,,/- 5/11 = ||/- 5/11 = \\Eng - PEng\\

<\\Eng-Pg\\ + \\Pg-PEng\\

^\\E„g-g\\ + \\P\\\\g-Eng\\

^(1 + Il5||)-<5||g|| <2(1 -ô)-iô<4ô.

Furthermore if/e/V,  ||/|| = 1, then Pf=f and  QJ=Enf.  Hence for

n^n0,   \\Q„f—Pf\\ = \\E„f—f\\<d.  Combining  this  with   the previous
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statement we have that, for each «_«„, ||ß„/— F/||<4<5 for all/eiVu

£„(W), 11/11 = 1- Iffe(NvEn{N))±^N±r\(En(N))±, then Qnf=Pf=0.
Taking the supremum (for each fixed n g h0) of ||ß„/— Pf\\ overall ||/|| = 1,

we obtain ||ßn-F||=4o. Thus \\Qn-p\\-+0.

Define On so that EniH)=EniN)®On and let Pn be the projection on

N®On. Then Pn has finite rank, FK_F and, since Qn is the projection on

EniN), \\En-PJ = \\Qn-P\\^0. Thus since \\AEn-EnAEJ-^0 and
||J?„-.P„||-»-0, we obtain \\APn-PnAPJ->0. Therefore condition (A0)

holds.
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