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AND  A  CONJECTURE  OF  GRAHAM  AND  ROTHSCHILD

NEIL  HINDMAN

Abstract. The equivalence of a conjecture of Graham and

Rothschild and the existence of certain ultrafilters on N is estab-

lished. It is also shown that this conjecture is equivalent to an

apparently stronger statement.

1. Introduction. Graham and Rothschild have asked [2, p. 291] if,

whenever TV is divided into two classes, there must always be an infinite

subset of one of those classes such that all finite sums of distinct members

ofthat subset remain in the same class. This question is attributed to them

as a conjecture by Erdös in [1].

The conjecture came to the author's attention in the form of two

questions of Fred Galvin who hoped they might shed some light on this

conjecture. They were: (1) Does there exist an ultrafilter/? on N such that

whenever A ep one also has {x:A+x ep} epl and (2) Does there exist

an ultrafilter p on TV such that whenever A e p one also has {x : A — x e p} e

/>? (Here A+x={y+x:y e A} and A—x={y—x:yeA and y>x}.) In

Galvin's words these would be called almost upward translation invariant

and almost downward translation invariant ultrafilters respectively.

The former question is answered in the negative in §4. In §3 it is shown,

with the aid of the continuum hypothesis, that the second question is in

fact equivalent to the Graham-Rothschild conjecture. In §2 the conjecture

is shown to be equivalent to the existence of another ultrafilter on TV and

to an apparently stronger statement of the conjecture.

2. The   Graham-Rothschild   conjecture   and  preliminary results.    We

write here A sr B whenever A is a nonempty finite subset of B and [n, oo)

for {x:x e N and n^x}.

2.1 Definition. T = {A:A^N and there is an infinite subset B of A

such that ][ F e A whenever F £ , B).

The Graham-Rothschild conjecture can thus be restated as: If N=AvjB

then AeF or BeV. The stronger version referred to above is: If

TV=(J"=i A i then there is some i such that A,e T.
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The following lemma is established by an easy induction.

2.2 Lemma. If F is a subset of N with 2" elements then there is a subset

GofFsuchthat2n\2G.

2.3 Lemma. If AeY then there exists a sequence {y„}n=i such that

2n€F 7„ e A whenever F <zf N and such that 2r+1|/„+1 whenever 2T^yir

Proof. Let B be as given by the definition of Y and write B={xn}%=x

with xn<xn+1 for every n. Let yx=xx and assume that for each m<.n we

have chosen ym and a subset Fm of {xn}„°=x such that (1) ym=y.Fm;

(2) if s<m and x e Fs and y e Fm then x<y; and (3) if s<m and 2r^ys

then 2^\ym.

Let xt = max Fn_x and let r be the largest integer such that 2r^yn_x.

Let a=k+2r+1 and let G={xi}"t=k+X. Then G has 2r+1 elements so by

Lemma 2.2 there is a subset Fn of G such that 2r+1|2 F„. Let j„ = 2 F„.

The sequence {yn}ñ=x is easily seen to satisfy the conclusion of the lemma

since 2«6í-F„ = I (LUfFJ.

2.4 Lemma. Assume that the Graham-Rothschild conjecture holds and

let {xn)n=x be a sequence in N such that JC„+i>2"=i x% for every N. Let

A = {"Z„eF xn:F sr N). If A—Bx\jB2 then there Is an i and a sequence

{FnKLi such that {2„6F yn : F çfN }SB{ and whenever Fç, [r, co) there

is a G Q, [r, co) such that 2neFyn—J.neG x„.

Proof. Define g:A->-N by the rule gilneF x„)=%„& 2""1. Since

every x in A/ has a unique binary expansion and since 2"=i *.<*,.+i, g is

one-to-one and onto.

For ie {1,2} let /^—^[.ßj. Then N=Dx\jD2 so by assumption there is

an /' such that Di e Y. Let {zn}%=1 be the sequence in Di guaranteed by

Lemma 2.3. Letyn—g~1(zn) and note that for each n there exists Gn £_/ N

such that z„ = 2ssc„ 2s. Further, since 2s+1|zn+1 whenever 2$^z„, ifseGm

and teGn and m<n then i<r. Now 2seG„ 2s=g(2SSGn xs) so j„=

2s6G„ xs. Hence if F <= y N and G=U«6i' C„ then %neFy„=j,>ea xs. To

complete the proof note that n^t whenever t e Gn.

2.5 Theorem. The Graham-Rothschild conjecture holds if and only if

there is an ultrafilter p on N such thatp^Y.

Proof. Since any set or its complement must be in p the sufficiency is

trivial.

Necessity. Let p be a subset of Y which is maximal with respect to

closure under finite intersection. ({N} is a subset of T closed under finite

intersection so we can find such a maximal subset p.)
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Suppose p is not an ultrafilter. Then there exist Bx and B2 such that

TV=/?jU.ß2and Bx $ p and B2 $ p. But then there exist Ax and A2 inp such

that BxnAx $ r and B2nA2$ T. Let A=AxnA2. Then A ep so A e T

and there exists a sequence {xn}?=i such that *„+i>2Li*¿ f°r every n

and y„Éi' JC„ e A whenever F £ , N.

Let /> = {¿„eí,^„:/r£/ A/}. Then DqA so iJn/iiS^^Ä, and hence

DnBx$ T. Similarly DnB2$ T. But this contradicts the conclusion of

Lemma 2.4.

2.6 Corollary. 77?^ Graham-Rothschild conjecture holds if and only

if whenever N= (JLi A{ there is an i such that A¡ e F.

3. The conditional existence of an almost downward translation invariant

ultrafilter. The ultrafilter produced in Theorem 2.5 does not necessarily

answer Galvin's second question even if the Graham-Rothschild con-

jecture is assumed to be valid. It is in fact possible to produce, under this

assumption, an ultrafilter contained in V which has an element A such that

A— x ^ r for every x in A. (To see this let {Bn:n e TV} be a partition of N

into infinite sets. Let Dn={2msF2m:Fç, Bn} and let An=\J%=n Dk.

Each AneT and {An:n e TV} is closed under finite intersections. There is

therefore, as in Theorem 2.5, an ultrafilter g contained in T and containing

{An:n e TV}. But ifx e A1 then x e Dn for some« and (Ax—x)nAn+x= 0.)

3.1 Lemma. Let p be an ultrafilter on N. Then {x:A—xep}ep

whenever A e p if and only if whenever A ep there exists x in A such that

A—x ep.

Proof.    Necessity is trivial.

Sufficiency. Suppose Aep but {x:A—xep}$p. Then, letting

D = {x:A— x $p}, one has D ep and consequently DnA ep. Thus there

exists y in DnA such that (DnA)—y e p. But then A—yep while

y e D, a contradiction.

3.2 Lemma. Let {xn:neN}çN and {Wn:ne N}ç^(N) such that

xne Wn and   W,^xcWnn(Wn—x„) for each  n.   If F^f[n, co)  then

y „ x e w

Proof. If \F\ = \ the result is trivial. Assume the lemma is valid

whenever \F\<m and let \G\=m (where G £, [n, oo)). Let 5 be the first

element of G and let F=G\{s}. Then \F\<m and Fç; [s+ï, co) so

TreFxr e Ws+l while W,+1£ W„—x„. Therefore xs+ yreF xT= yr€(; xT e Ws

while Síin. Thus y_rs(J xT e Wn.

3.3 Theorem. Assume the continuum hypothesis. The Graham-Roths-

child conjecture holds if and only if there exists an ultrafilter p on N such

that {x:A—xep}ep whenever Aep.
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Proof. Sufficiency.1 Let A(jB=N. Without loss of generality A ep.

Let AX=A and let xx e Ax such that Ax—xx ep. Let A2=Axn(Ax—xx).

Then A2ep and we may choose inductively An and xn in An such that

An+1 ep where An+x=Anr\(An—xn). By Lemma 3.2 one has each An e Y

and in particular A e Y.

Necessity. Well order the power set of N by the ordinals less than œx,

letting N itself appear first in this order. Write ¿P(N)={A(1,:ix<cox}. Let

Z0=A0, U0={(n):ne N} (where (n) = {rn:r e N}) and assume that for

each o-<a we have chosen ZCT and Yl„ satisfying the following inductive

hypotheses.

(l)Za = AaovZa = N\A„;

(2) |nff| = S0andifT<o-thennTçn<T;

(3) Z„eu,; and
(4) if A <= j Wa then there exist an infinite subset B of (~) A and, for each

x in 75, an element Wx of II,, such that Wxç nAn(fjA-x).

Inductive hypotheses (1), (2), and (3) clearly hold when o-=0. To see

that (4) holds note that if A £/ II0 then C]A = (n) for some n and that

(n)n((n)—rn)=(n) for every r and n.

Now let n^=UCT<C[ n„. Since x<wx we have |Il¿| = X0 so we may write

ná = {F„:« e N}. Let ¡7„=n«U Vk. Now Ux e Tl„ for some o-<a so there

exist xx and t such that x1 e Ux and f/,£ Uxr^(Ux—xx). Let m(l)=l and

w(2)=i+l. In particular then Um{%)^Um{x)r\(Um{x)—xx). Assume we

have chosen xs and m(s+1) for each s<r such that xs e UnU), xf> ~£iz\ xk,

m(s+l)>m(s),andUmU+x)^UmU)n(UmU)-x^.Since{Vk:l^k^m(r)}^

Ifr for some r<a and since UmW) = f)knlTx Vk there are an infinite subset B

of t/ra(r) and, for each x in B, an element T)^ of IIr such that Dx^ UmW) n

(UmM—x). Let xr e B such that xr>2¡fc=i *s- Then Dx=Vn for some «.

Let m(r+l) = max{/i,m(r)+l}. Then Um{r+1)çUmlr)r\(UmM-xr) as

desired.

Let WT= UmM and note that Wr<^ UT. By Lemma 3.2 if F £/ [r, co) then

I.tfï.eH'r By Lemma 2.4 if fi^^n^^FÇ^} and /32=

{Zse*- xs:F _=, -V}\/4a then there is an .' and a sequence {j„}"=i such that

{2«eF y.f-F -f N}- Bi ar>d whenever F s, [h, co) there is a G £ r [«, co)

such that Zssi-J»0!!«««? *»•in particular if F g, [r, co) then ]>seF _ys e WT

and in fact 2seF js e t/r.

Let Z«=^, if /=1 and let Z„=N\Aa if i=2. Let Su={2*ry,'Fzt
[n, co)} and let Il0[=Ii;u{Z<,}u{SI!:/7 e A}. Then hypotheses (1), (2), and

(3) are trivially satisfied.

In order to verify hypothesis (4) let A Ç, IIa. Then A=AjUA2 where

A^n^ and A2g,{Z<x\\J{Sn:n e N] (and not both Ax and A2 are empty).

1 Added in proof. The sufficiency of Theorem 3.3 was observed by Galvin.
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If A2=0 then the result is true by assumption since Ai£nff for some

¿r<a. If A25¿ 0 then there is some n such that 5n£ f) A2 (for SXÇ:ZX and

SM+1Ç Sn). If Ax= 0 then S„£ f) A. If Al5¿ 0 then £/sg D A2 for some s.
Since SSGUS we have in either case some r such that Srçf] A. Let

B={yk:ke [r, 00)} and let j^e^. Then S^ e IIa and 5t+1g5rn

(5,-^)2 (I An(H A— yk) as desired. The induction is complete. Let

p=Ux<<0 n^. p is clearly an ultrafilter.

Now let Aep. To complete the proof it suffices, by Lemma 3.1, to

produce x in A such that A—x ep. A eUx for some a so by hypothesis

(4) there is some x in A and some Win ria such that W^ A n(A —x). Then

Wep and WçA—x so ,4— * e/> as desired.

What is not answered by Theorem 3.3 is the validity of the Graham-

Rothschild conjecture. It does relate that conjecture to an ultrafilter,

which may be viewed as a point in ßN, the Stone-Cech compactification

of TV. Unfortunately the author has been unable to topologically charac-

terize those points corresponding to almost downward translation in-

variant ultrafilters.

4. The nonexistence of an almost upward translation invariant ultrafilter

on TV. Galvin's first question is answered in the negative by exhibiting two

sets whose union is N, neither one of which could be in any ultrafilter

with the property that {x:A+x ep) e p whenever Aep.

4.1 Lemma. // p is an ultrafilter on TV with the property that

{x:A+x ep) e p whenever Aep then for each element A of p there is a

sequence {xn}%=x in A such that for each n, xn+2>xn+xn+x, xn+x>xn, and

[xn> xn+x   x„, xn+2   (xn+xn+x)}S A.

Proof. Let A1=A and choose {x„}£Li and {/4„}2Li such that xn e An,

An+xnep, and An+x=Ann(An+xn). Then clearly {xn, xn+J-x„}^A

for each n. Also xn+2 e An+xn(An+x+xn+x) so xn+2-xn+x e An+X =

Ann(An+xn). Thus xn+2-(xn+xn+x) e An^A.

4.2 Theorem. If p is an ultrafilter on TV then there is some element A of

p such that {x:A+x ep} $ p.

Proof. Suppose p has the property that {x : A + x e p) e p whenever

A ep. For ie {1, 2} let Bi = {3n(3k + i):{n, /c}cTVu{0}}. Then N=B(UB2

so there is an / in {1, 2} such that Bi ep.

For each x in TV let/(x) be the largest integer n such that 3n|jc. Let

{xn}ñ=i be as given by Lemma 4.1. Since xn+x—xn e Bt for each n we have

f(xn+i)úf(Xn)- Hence there is an m such thatf(xm)=f(xm+x)=f(xm+2).

But then xm+z—(xm+xm+1) £ B¡, a contradiction.
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