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THE EXISTENCE OF CERTAIN ULTRAFILTERS ON N
AND A CONJECTURE OF GRAHAM AND ROTHSCHILD

NEIL HINDMAN

ABsTRACT. The equivalence of a conjecture of Graham and
Rothschild and the existence of certain ultrafilters on N is estab-
lished. It is also shown that this conjecture is equivalent to an
apparently stronger statement.

1. Introduction. Graham and Rothschild have asked [2, p. 291] if,
whenever N is divided into two classes, there must always be an infinite
subset of one of those classes such that all finite sums of distinct members
of that subset remain in the same class. This question is attributed to them
as a conjecture by Erdos in [1].

The conjecture came to the author’s attention in the form of two
questions of Fred Galvin who hoped they might shed some light on this
conjecture. They were: (1) Does there exist an ultrafilter p on N such that
whenever 4 € p one also has {x:A+x ep} ep? and (2) Does there exist
an ultrafilter p on N such that whenever 4 € p one also has {x:4A—x e p} e
p? (Here A4+x={y+x:ye A} and A—x={y—x:y€ A and y>x}.) In
Galvin's words these would be called almost upward translation invariant
and almost downward translation invariant ultrafilters respectively.

The former question is answered in the negative in §4. In §3 it is shown,
with the aid of the continuum hypothesis, that the second question is in
fact equivalent to the Graham-Rothschild conjecture. In §2 the conjecture
is shown to be equivalent to the existence of another ultrafilter on N and
to an apparently stronger statement of the conjecture.

2. The Graham-Rothschild conjecture and preliminary results. We
write here 4 <, B whenever A is a nonempty finite subset of B and [n, o)
for {x:x € N and n=x}.

2.1 DErINITION. T'={4:A4< N and there is an infinite subset B of A
such that > F € A whenever F <, B}.

The Graham-Rothschild conjecture can thus be restated as: If N=AUB
then 4 €I’ or BeI'. The stronger version referred to above is: If
N=J., A4, then there is some i such that 4, T
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The following lemma is established by an easy induction.

2.2 LeMMA. If F is a subset of N with 2" elements then there is a subset
G of F such that 2|3 G.

2.3 LeMMA. If A €T then there exists a sequence {y,}%_, such that
DneF Yn € A whenever F <, N and such that 24|y, ., whenever 27<y,.

PrROOF. Let B be as given by the definition of I" and write B={x,}2,
with x,<x,,, for every n. Let y;=x, and assume that for each m<n we
have chosen y,, and a subset F,, of {x,}7_, such that (1) y,=> F,;
(2) if s<m and x € F, and y € F,, then x<y; and (3) if s<m and 2"< y,
then 27+1y,,.

Let x,=max F,_, and let r be the largest integer such that 2'<y,_,.

Let a=k+27* and let G={x,};_x+,- Then G has 2+ elements so by
Lemma 2.2 there is a subset F, of G such that 2"+1|3 F,. Let y,=> F,.

The sequence {y,}.-, is easily seen to satisfy the conclusion of the lemma

Since ner ¥, =2 (Uner F)-

2.4 LEMMA. Assume that the Graham-Rothschild conjecture holds and
let {x,};_, be a sequence in N such that x, > >, x; for every N. Let
A={Dner X,:F S, N}. If A=B,UB, then there is an i and a sequence
{Yninc1 such that {3 .cp y, F <, N} B, and whenever F. <, [r, o) there
isaG <, [r, ) such that 3 cp ¥, =2 ne X,

ProoOF. Define g:4—N by the rule g(Z,cp Xx,)=ner 2"~L. Since
every x in N has a unique binary expansion and since 3., x,<X,,;, g i$
one-to-one and onto.

Forie{l, 2} let D,=g[B;]. Then N=D, U D, so by assumption there is
an i such that D; e I'. Let {z,}7_, be the sequence in D, guaranteed by
Lemma 2.3. Let y,=g~'(z,) and note that for each » there exists G, =, N
such that z,= >, 2°. Further, since 2:+!|z,,, whenever 2°<z,,if s€ G,
and t€ G, and m<n then s<t. Now Zsean 2=g(Zeq, X)) SO y,=
2sec, X, Hence if F< N and G=Unep G, then Z,cp y, =i x,. To
complete the proof note that n<t whenever r € G,,.

2.5 THEOREM. The Graham-Rothschild conjecture holds if and only if
there is an ultrafilter p on N such that p<T'.

PROOF. Since any set or its complement must be in p the sufficiency is
trivial.

Necessity. Let p be a subset of I' which is maximal with respect to
closure under finite intersection. ({N} is a subset of I" closed under finite
intersection so we can find such a maximal subset p.)
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Suppose p is not an ultrafilter. Then there exist B, and B, such that
N=B,UB, and B, ¢ p and B, ¢ p. But then there exist 4, and 4, in p such
that B,NA4, ¢ T and B,NA,¢ . Let A=A,NA,. Then Aepso AeT
and there exists a sequence {x,}s_, such that x,,,>>7", x, for every n
and >, x, € A whenever F <, N.

Let D={>,cr x,: F =, N}. Then D= A so DNB,< 4,NB, and hence
DB, ¢ T. Similarly DN B, ¢ T". But this contradicts the conciusion of
Lemma 2.4.

2.6 COROLLARY. The Graham-Rothschild conjecture holds if and only
if whenever N=\Ji_, A, there is an i such that A; €T .

3. The conditional existence of an almost downward translation invariant
ultrafilter. The ultrafilter produced in Theorem 2.5 does not necessarily
answer Galvin’s second question even if the Graham-Rothschild con-
jecture is assumed to be valid. It is in fact possible to produce, under this
assumption, an ultrafilter contained in I" which has an element 4 such that
A—x ¢ T for every x in A. (To see this let {B,,:n € N} be a partition of N
into infinite sets. Let D,={3,r2™:F<,B,} and let 4,=U2, D,.
Each 4, € I" and {A4,:n € N} is closed under finite intersections. There is
therefore, as in Theorem 2.5, an ultrafilter g contained in I" and containing
{A,:ne N}.Butif x € 4, then x € D, forsome nand (4;,—x)NA4,.,=3.)

3.1 LeMMA. Let p be an ultrafilter on N. Then {x:A—x€p}ep
whenever A € p if and only if whenever A € p there exists x in A such that
A—xep.

ProoOF. Necessity is trivial.

Sufficiency. Suppose Aep but {x:A—xep}¢p. Then, letting
D={x:A—x ¢ p}, one has D € p and consequently DN A € p. Thus there
exists y in DNA such that (DNA)—yep. But then A—yep while
y € D, a contradiction.

32 LeMMA. Let {x,:ne N}= N and {W,:ne N} P(N) such that
x,eW, and W, ., cW,N(W,—x,) for each n. If F<,[n, o) then
zrelv‘ Xy € Wn'

Proor. If |F|=1 the result is trivial. Assume the lemma is valid
whenever |F|<m and let |G|=m (where G <, [n, ©)). Let s be the first
element of G and let F=G\{s}. Then |F|<m and F <, [s+]1, o) so
zreF X, € W<+l while We-'»lg Wf‘xs- Therefore xs+ zrelv' X, = ZreG X, € We
while s=n. Thus 3, x, € W,.

3.3 THEOREM. Assume the continuum hypothesis. The Graham-Roths-
child conjecture holds if and only if there exists an ultrafilter p on N such
that {x:A—x € p} € p whenever A € p.
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ProOF. Sufficiency.! Let AUB=N. Without loss of generality 4 € p.
Let A;=A and let x, € 4, such that 4, —x, € p. Let A,=A4,N(4,—x,).
Then 4, € p and we may choose inductively 4, and x, in A4, such that
A, €pwhere A, ,=A,N(A,—x,). By Lemma 3.2 one has each 4, € T
and in particular 4 € T'.

Necessity. Well order the power set of N by the ordinals less than w,,
letting N itself appear first in this order. Write Z(N)={4,:a<w,}. Let
Zo=A,, IIy={(n):n€ N} (where (n)={rn:r € N}) and assume that for
each s<a we have chosen Z, and II, satisfying the following inductive
hypotheses.

(1) Z,=A, or Z,=N\A4,;

2) |I,|=R, and if <o then I1_<II;

(3) Z,e1l,; and

(4) if A =TI, then there exist an infinite subset B of (A and, for each
x in B, an element W, of I1_ such that W, (JAN(NA—x).

Inductive hypotheses (1), (2), and (3) clearly hold when ¢=0. To see
that (4) holds note that if A <, Il then (JA=(n) for some n and that
(n) N((n)—rn)=(n) for every r and n.

Now let II;=U,_, II,. Since «<w, we have |II,|=R, so we may write
H,={V,:neN}. Let U,=;_1 V,- Now U, €I, for some o<« so there
exist x; and ¢ such that x; € U; and V,< U;N(U;—x;). Let m(1)=1 and
m(2)=t+1. In particular then U, )< U, m(Umu)—kl). Assume we
have chosen x_ and m(s+1) for each s<r such that x, € U,,(,y, X,> D51 Xi»
m(s+1)>m(s), and Uy 1)S Upig V(U —x)- Since {V,: 1Sk =m(r)} <
I1, for some <« and since U,,,, =77 V, there are an infinite subset B
of U, and, for each x in B, an element D, of I, such that D, U,,,,N
(Upin—x). Let x, € B such that x,> 3771 x;. Then D, =V, for some n.
Let m(r+1)=max{n,m(r)+1}. Then U, .S Unynin "Unn—x,) as
desired.

Let W,=U,,, and note that W,< U,. By Lemma 3.2 if F <, [r, o) then
2sF X, € W,. By Lemma 2.4 if Bi=A,N{Jr x,:F<,N} and B,=
{2er x,:F =, N}\A4, then there is an i and a sequence {y,}2_, such that
{ZseF y,:F =, N}< B, and whenever F < [n, ) there is a G <, [n, ©)
such that X p y,= > x,. In particular if F < [r, o0) then J.p y, € W,
and in fact Jpy. € U,.

Let Z,=A4, if i=1 and let Z,=N\4, if i=2. Let S,={J.ry,:F <,
[n, )} and let IT,=TI1, U{Z,} U{S,:n € N}. Then hypotheses (1), (2), and
(3) are trivially satisfied.

In order to verify hypothesis (4) let A <, II,. Then A=A, UA, where
A, 1], and A,={Z,}U{S,:n € N} (and not both A, and A, are empty).

! Added in proof. The sufficiency of Theorem 3.3 was observed by Galvin.
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If A,=@ then the result is true by assumption since A, < II, for some
o<a. If A, & then there is some n such that S,= () A, (for S;=Z, and
S,1SS,). If A= then S,= N A. If A, & then U,= () A, for some s.
Since S, U, we have in either case some r such that S,=() A. Let
B={y, ke [r,©)} and let y,€B. Then S,,,€ll, and §,,,=S,N
(S,—y)<= N AN( A—y,) as desired. The induction is complete. Let
p=Uaca, IL,. p is clearly an ultrafilter.

Now let 4 € p. To complete the proof it suffices, by Lemma 3.1, to
produce x in A4 such that A—x € p. 4 €1, for some « so by hypothesis
(4) there is some x in 4 and some W in Il, such that W< 4 N (A4 —x). Then
Wepand WS A—x so A—x € p as desired.

What is not answered by Theorem 3.3 is the validity of the Graham-
Rothschild conjecture. It does relate that conjecture to an ultrafilter,
which may be viewed as a point in SN, the Stone-Cech compactification
of N. Unfortunately the author has been unable to topologically charac-
terize those points corresponding to almost downward translation in-
variant ultrafilters.

4. The nonexistence of an almost upward translation invariant ultrafilter
on N. Galvin’s first question is answered in the negative by exhibiting two
sets whose union is N, neither one of which could be in any ultrafilter
with the property that {x:4+4x € p} € p whenever 4 € p.

4.1 LemMa. If p is an ultrafilter on N with the property that
{x:A+x € p} € p whenever A € p then for each element A of p there is a
sequence {x,}x_, in A such that for each n, X, s> X,+X 41, Xpy1>X,, and
{xn’ Xnt1— Xn» x,,+2—(xn+x,,+1)}s A.

Proor. Let A;=4A and choose {x,}, and {4,}r, such that x, € 4,,,
A,+x,€p, and A,,=A,N(4,+x,). Then clearly {x,, x,.,—x,}S 4
for each n. Also x,.,€ A, . 1N(A, 1+ X,01) SO Xp0—X, €EAp=
A,N(A,+x,). Thus x,,,—(x,+x,,,) € A,S 4.

4.2 THEOREM. If p is an ultrafilter on N then there is some element A of
p such that {x:A+x € p} ¢ p.

PrOOF. Suppose p has the property that {x:4 + x € p} € p whenever
Ae€p. Forie{l,2}let B;={3*(3k+i):{n, k}< NU{0}}. Then N=B,UB,
so there is an i in {1, 2} such that B, € p.

For each x in N let f(x) be the largest integer n such that 37|x. Let
{X,}n, be as given by Lemma 4.1. Since x,,, —Xx,, € B, for each n we have
f (%4 = f(x,). Hence there is an m such that f(x,,)=f (X)) =f (Xmy2)-
But then x,,,o— (X, +X,.1) ¢ B;, a contradiction.



346 NEIL HINDMAN

REFERENCES

1. P. Erdds, Problems and results on combinatorial number theory (preprint).
2. R.L. Graham and B. L. Rothschild, Ramsey’s theorem for n-parameter sets, Trans.
Amer. Math. Soc. 159 (1971), 257-292.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE COLLEGE, LOS ANGELES,
CALIFORNIA 90034



