
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 36, No. 2, December 1972

CERTAIN M.O.L.S. AS GROUPS

JUDITH  Q.   LONGYEAR

Abstract. It is shown that latin squares may be composed in

a natural way, and that many sets of mutually orthogonal latin

squares (m.o.l.s.) connected with projective planes may be regarded

as groups of m.o.l.s.

An axiom T6 is given for ternary rings. If T6 is true for a given

ring, then the associated projective plane has prime power order;

thus if T6 is a consequence of the definition for ternary rings, all

projective planes have prime power order.

1. Introduction and definitions. For background material and proofs

of assumed theorems, see Hall [3] or Ryser [8]. It is known that a pro-

jective plane of order n, that is, with n+\ points on each line, exists iff a

set of n — 1 mutually orthogonal latin squares (m.o.l.s.) of order n exists.

Since the question of existence is largely unresolved for non-prime-power

n, it is important to regard both planes and m.o.l.s. in as many different

lights as possible.

Definition 1. Let ^ be the class of all n x n arrays having all of the

numbers {0, 1, • ■ • , «—1} as entries in each column. If S is any member

of <&, they'th column of S may be regarded as a permutation p(j) of the

elements {0, 1, • • • ,«—1}, and so we may write S=(p(0),p(l), ■ • • ,

p(n—\)). If T is another such array, say T=(q(0),q(l), ■ ■ • ,q(n — \)),

define S * T=(p(0)q(0),p(l)q(l), ■■■, p(n-l)q(n-l)), where p(i)q(i) is

the usual composition of permutations. If id is the identity permutation,

then 7= (id, id, • • • , id) is a unit for #.

A charming and useful consequence of this definition is given by

Proposition 1. Recall that an array is a latin square if each of {0, 1, - • • ,

n— 1} occurs in each row and each column, and that two arrays (at f),

(bi f) are orthogonal if the set of all (a¡ ¿, bf,) is exactly the set of all (i,j)

for 0£i,j£n—\.

Proposition 1. S=(p(0),. . ., p(n~ 1)) is a latin square iff pW^pij')

is a regular permutation for all i andj. If S and T=(q(0), ■ • • , q(n— 1)) are

latin squares then S and T are orthogonal iff S * T~x is a latin square.
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Proof. Since piiY^pij) is a regular permutation exactly when its

application to every element y is distinct from y, we see that p(i)~1p(j) is

regular exactly when piQ^pifiy^y or p(j)y?£p{i)y. But this is the same

as saying that the column/differs from the column i in the placey, which

defines latinity for S since each column contains all of the set {0, 1, • • • ,

H-l}.

Now suppose that S and Tare latin squares, normalized so that/»(0)=

q(0)=id. Clearly, T-1 = (id,q(\)-\ ■ ■ ■ ̂ (n-l)-1) and

S*T-1= (id,p(l)q(l)-\ ■■■,p(n- \)q{n - l)"1).

If p{i)j=p(k)l=r and q(i)j=q(k)l=s then qii^s^j and q(k)~1s=l,

whence p(i)q(i)~1s=p(i)j=r=p(k)l=p(k)q(k)~1s. But that says that

pWqiiy-s^pWqik)-^ or that

(1) (p(k)q(k)-^(p(i)q(i)^)s = s.

Thus if S and T are not orthogonal, then the pair (r, s) occurs twice, say

at (i,j) and (k, /), with ij±k and jj^l. Then the above discussion shows

that S * 7_1 is not a latin square. Conversely, if S and T are orthogonal,

then (1) can only happen if/=&, so 5 * 7"-1 is a latin square.

If one restricts oneself to latin squares, all of the above is equally true,

mutatis mutandis, using rows and row permutations instead of columns

and column permutations; however, due no doubt to what Halmos

calls "a perversity not of the author, but of nature", only the column

definition yields theorems stronger than Proposition 1. In fact, Mann [7]

has given the row version of Proposition 1.

Definition 2. With each coordinatization of each projective plane P,

there is associated a set of n—\ normalized m.o.l.s. We take the set

S^=S^(P) to be these n— 1 m.o.l.s., together with the array /=

(id, id, - ■ ■ , id), which is orthogonal with every normalized latin square.

2. Desarguesian projective planes. In [5], Veblen constructs all

Desarguesian planes. We may construct these in terms of their m.o.l.s. as

follows. Let & be any Galois field; then the square Sk(fS) = Sk has as its

(i,j)th entry the element xt+XjXk where the x's are the elements of & in

some ordering. If 0=x0 and l=xx, then each Sk is normalized, 50 fails

to be a latin square and Sx, S2, • • • , Sn_x are a set of n— 1 m.o.l.s. where

n is the order of *$. It is easy to see that Si=(id, ak, a2k, • • • , o-(n_1>*)

where a is the permutation represented by the cycle (0, 1, x2, • ■ ■ , xn_x).

For every k and y including 0,

Sk * S, = (id, ak+J, ■■■ , o-l»-!) <*+>•>) = Sk+¡.

If Sk7^I, let y be the label assigned to the inverse of xk in <3, then Si e S,
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so Sf is closed under multiplication and taking inverses. But this means

that y is an abelian (since k+j=j+k as labeling numbers) group, so we

have the following.

Theorem 1.    7/7" is a Desarguesian plane, then ¿?(P) is an abelian group.

3. Veblen-Wedderburn systems. The famous first example of a non-

Desarguesian plane, given by Veblen and Wedderburn [6], is usually

written in the following collineation of order 13 taking subscripts i to

i+l (mod 13) for both lines and points. (See, for instance, Hall [3].)

L0:A0 A-i A3 A$ B0 C0 Da E0 F0 G0,

M0:A0 B1 £8 D3 Dn £, £5 £6 G7 G9,

N0:A0 C, C8 £7 £9 F3 Fn G2 G5 G6,

P.-.A.B.B^D, DsF,F-0F6G3Gn,

ico-Af) B2 o5 is6 C3 Cn ¿j ¿8 r7 r9,

7v0. /4q C7 C9 L>2 Dr, L*6 ¿3 £j! f~i r8,

S0'-A0 B3 Bn C2 C5 C6 D-j 7)9 G, G8.

The affine representation of this gives rise to a set of m.o.l.s. which may be

briefly written as follows. Let a be the permutation (123)(456)(789) and x

be the permutation (147)(258)(369), then

S, = (id, a, a-, x, a2.v2, a2x, x2, ax2, ax),

52 = (id, a2, a, x2, ax, ax2, x, a2x, a\v2),

53 = (id, A-2, x, a2x, a, a2, ax, arx2, ax2),

54 = (id, ax, a2x2, ax2, x, a, a2, x2, a2x),

S¡ = (id, ax-, a-x, a-x-, x-, ax, a, x, a-),

56 = (id, A', .y2, ax, ax2, a2x2, a2x, a2, a),

57 = (id, a2x, ax2, a, a2, x, a2.x2, ax, x2),

58 = (id, a2A'2, ax, a2, a2x, .x2, ax2, a, x).

Thus we have the observation that for this particular projective plane

Af, £f(N) is an abelian group. For an excellent description of Veblen-

Wedderburn systems, or V-W systems, see Hall [3, Chapter 12].

Theorem 2. If "V is a V-W system, and if P is the projective plane

derived from 'V, then Sf=£f(P) is a group.

Proof. Let the rows and columns of S0, Slt..., Sx be indexed by the

elements of the ternary ring "V, with 0 first and 1 second, and with the

latin squares of P also indexed by i'\ Then each Sm has as its (/,y')th



382 J.   Q.   LONGYEAR [December

entry the mark i—m-j, and we may write 5m=(id, max, • • • , max)

where mGj(i) = i—m -j.

We claim that S0, Su • • • , Sx are actually S0 = (id, id, • • • , id) and

n — 1 m.o.l.s. Since 'f under addition is an abelian group, the 0',/)th

place of 5C, that is S0(i,j)=i—0 -j=i, so 50=(id, id, • • ■ , id). If mj^O,

and j^k then Sm(i,j)?iSm(i, k); for suppose otherwise. Then s—mj=

i—mk implies mk=mj+0. For kj^j there is a unique solution m to this

equation. But 0 • A;=0 -y'+O, so m=0, a contradiction.

For every m, and 19*/, Sm{i,j)^Sm{l,j), for suppose i—mj=l—mj,

then /=/.

Let m^p, then if Sm(i,j)=Sm(k, I) and SP(i,j)=Sp(k,l) we want to

show i=k and j=l so as to have Sm and S„ orthogonal. But Sm(i,j)=

Sm(k,l) says i—mj=k—ml and similarly i—pj=k—pl so that ml=

mj+(k — i) andpl=pj+(k—i). By the fifth axiom for V-W systems, there

is a unique solution to xl=xj+(k—i), whenever /#/. Since mj^p, we have

/=/, and so i=k, and Sm and Sj, are orthogonal.

Now consider £f as a set under the operation *. Since <S^ is finite and

I=S0 e &", we need only show that S" is closed for 3? to be a group. If

Sm and S„ are in Sf, then 5m * Sj, = (id, maxpax, ■ ■ ■ , maxpax), so

Sm * S„(i,j) = pOjmOjii) = /?o-3.(' - w/) = (i - mf) - pj

= i - (mj - pj) = i - (m + p)j.

\îy is the label assigned to the square for m+p, then at each place (i,/)>

Sm * Sv(i,j)=Sy(i,j), so Sm * SJ)=S'1( and «^ is indeed a group.

In general, a ternary ring is a set ^" of marks and a ternary operation

a ■ b ° c defined for all a, b, c in 3~. The marks must include 0 and 1 and

the operation must satisfy the following axioms.

Tl. 0 ■ b ° c=a ■ 0 ° c=c.

T2. 1 -b°0=b- 1 o0=b.

T3. For given a, b, c, there is a unique x such that a ■ b ° x=c.

T4. For given /w^r and ¿>, c there is a unique x such that x ■ m ° b=

x • r o c.

T5. Forgiven a^è, c, ¿/there is a unique pair m, r such that a • w ° r=c

and b ■ m ° r=d.

As Hall points out when giving this definition [3, Chapter 12], axiom

T3 guarantees a unique line in each bundle of parallels through the point

(a, c), axiom T4 guarantees that nonparallel lines intersect in a unique

point and axiom T5 guarantees that two points not already contained in

a line of a certain bundle of parallels, must be in a unique line in some

other bundle.

Of course, using 3T gives an affine plane which must be extended to a

projective plane.
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4. Some corollaries. We need the following easy group theoretic

results. Let P be any projective plane, and let Sf=Sf(P)={S0=I,

Si, • • • , 5'„_1} be the m.o.l.s. for some coordinatization of P. Take each

S,= (id, iax, ■•• , ian_x) and G,={id, lor,, • • • , («—l)^}.

Lemma.   If S is a group, then

(1) for every jy¿0, G3 is a group and S is isomorphic with G¡ under the

mapping fSi=ioj;
(2) every ia¡ is a product of cycles each of length l=l(i,j);

(3) every iai is a product of cycles of length I, where I does not depend

on i or j;

(4) every Sk^I has the same order;

(5) the order of each S^I is a prime.

Proof,    (i) is straightforward.

(ii) Suppose io¡ had cycles (0 • • ■ a) and (1 • • ■ b); then (ia j)a0=0 but

(ia,)a\=b^\, so (io})a would not be a regular permutation.

(iii) Suppose kOj had order a and ka¿ had order b. Then (Sk)a has y'th

coordinate id, whence (ko¡)b = id since S is a group. But then a divides b

and similarly b\a. Thus each nonidentity coordinate permutation of Sk has

the same order.

(iv) S^Gj, G2, • • • , G„_! and each Acer.,- and fccr, are different for i^tj,

so by the pigeon hole principle, Sk must have coordinate permutations

corresponding exactly to the elements of G,, all of which have order 1 or

else the same /.

(v) if (Sk)nl= I, then (S^f=I.

Corollary, (i) If £f=Sf(P) is a group, then P has prime power

order.

(ii) If P is derived from a Veblen-Wedderburn system then P has prime

power order.

Remark. For an arbitrary projective plane P with associated ternary

ring .T=.T(P), each Sk e Sr*=S>i'(P) has Sk(i,j)=i-j ■ k where i—j ■ k=x

is the unique solution to / • b ° x=j, guaranteed by T3. Then each ka¡(i)=

i—j ■ k. The jth coordinate permutation of Sm * Sk is ma^kdy When

applied to ; this yields majkai(i)=(i—j ■ k)—j ■ m. It is an easy conse-

quence of Tl and T5 that, fory'^O, there is a uniquep such that {i—j ■ k) —

j.m = i-j.p.

Unfortunately p may depend on j, so that (i—l-k)—lm=i—l-p'

with p'î^p- Of course, if p'=p always, then Sm * Sk=Sp and so ¿f is a

group.

Corollary. If$(P) satisfies the following T6 then P has prime power

order.
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T6. For given y, 1^0, and given x, y and i, there is a unique solution p

toj-p ° y=i=l ■ p o x.

I am unable to show that T6 is independent of Tl through T5 or that

T6 is a consequence of Tl through T5. Of course, if T6 is a consequence,

then all projective planes have prime power order.
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