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SOME  HOMOLOGICAL RESULTS  ON  CERTAIN
FINITE RING EXTENSIONS

R.  RAPHAEL

Abstract. All rings are commutative with identity and all

modules are unitary. A ring R is connected if 0 and 1 are the only

idempotent elements of R. R is semiconnected if the number of

idempotents in R is finite.

Proposition. Suppose that R is connected, that I is a principal

ideal of R\x\, and that R[x]jl is a finitely generated R-module. Then

R[x]/I is a free R-module.
Proposition. Suppose that R is semiconnected, that I is a

principal ideal of R[x], and that R[x]¡I is a finitely generated R-

module. Then R[x]¡I is a projective R-module.

These results are applied to integral extensions.

Introduction. Let R be a commutative ring with identity, let x be an

indeterminate, let / be an ideal of R[x], and let c(I) denote the ideal of

R generated by the coefficients of the elements of /. The purpose of this

article is to establish Proposition 4 (6) which states that under suitable

conditions R[x]¡I is a free (projective) .K-module. These results are related

to a previous result of Nagata which ensures the flatness of R[x]¡I. The

motivation for our work is the case where j1? is a field and where / is the

ideal of R[x] which is generated by the minimal polynomial for an element

which is algebraic over R. All rings are commutative with identity, and

act on modules from the right. Terminology and notation in this paper are

consistent with [2]. This research was supported by a grant from the

National Research Council of Canada.

Lemma 1. Suppose that I is a principal ideal of R[x] and that c(I) = R;

then R[x]II is aflat R-module.

Proof.    [3, Theorem 1].

Definition 2. Let R be a ring. R is called connected if 0 and 1 are the

only elements of R which are idempotent. A ring is connected if and only

if its spectrum is connected as a topological space.
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Lemma 3. Suppose that R is connected. Let r e R, and let K=rR+(r)*.

Suppose that r is not equal to 0, and that r is not a unit in R. Then K is a

proper ideal of R.

Proof. By contradiction. Suppose that K=R. Then 1 g K. Thus there

exist aeR and b e (r)* such that l=ra+b. Thus r=r ■ l=r(ra+b) =

r2a+rb = r2a, since b e (r)*. Therefore ra=r2a2 = (ra)2, which shows that

ra is an idempotent element. By hypothesis, ra = 0 or ra=l. If ra=\, then

r is a unit which is a contradiction. Suppose ra=Q. Then r=r ■ 1 =

r(l—ra)=rb=0. Thus r=0, which is also a contradiction.

Proposition 4. Suppose that R is connected, that I is a principal ideal

of R[x], and that R[x]ß is a finitely generated R-module. Then R[x]/I is a

free R-module.

Proof.    We divide our argument into three parts.

(1) 7^(0). For suppose that 7=(0). Then R[x]II=R[x]. By [4, p. 254],
x satisfies a monic polynomial equation with coefficients in R. This

contradicts the fact that x is an indeterminate.

(2) The case when R is a semiprime ring. I is a principal ideal. By (1),

/is generated by a nonzero polynomial, say f(x)=rmxm + - ■ -+rxx+r0,

rm9iÇ). By Lemma 3, either rm is a unit or K=rmR+(rm)* is a proper ideal.

We show that rm is a unit by assuming that A" is a proper ideal of R and

deriving a contradiction.

Let cp : R [x]->-R [x]/I be the canonical surjection of rings. Let cp(R) = R

and let cp(x)=x. Then R[x]¡I=R[x], and Äis a subring of R[x]. Further-

more since R[x]¡I is a finite A-module, the ring R[x] is a finite ^-module.

By [4, p. 254], x satisfies a monic polynomial equation over R. Thus there

exist sn, s„_x, ■ ■ ■ ,sx,s0e R,sn = ï such that y„ 5jXJ=5. For each j, let sá

be a preimage of s¡ under the mapping cp\R, but insist that sn=l. Let

p(x)=y.ô sjXj. Then cp(p(x))=Q. Therefore p(x) e/=ker cp. Thus /contains

a monic polynomial. Since / is generated by f(x) we have p(x)=f(x)g(x)

for some polynomial g(x)=tQxl' + t<)_xx''~l + - • ■+tlx+t0, tteR, /=0,

1, • • • ,q, tQ7¿0. Clearly m+q~§:n. Formal multiplication of f(x) and g(x)

yields the following 'c's as the coefficients of xm+'', x",+,'~l, ■ ■ ■ , xm:

c        = r  1

m-v*7—1 m <?—1 ~T" ',);—i*ij>

^m+Q— 2 ' m'o—2    '    ' m— V q—1  ~1~ ' m— 2*i/'

Cm — rmf0 + rm-lh +  ' " '  + rm_hth,

where h = min[m, q].
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The leading coefficient of p(x) is 1. Since rm e K, cm+q e K. Therefore

£■„,+,# 1, which implies that cm^q=0. Also tq e (rm)*, so tq e K. We proceed

to cm+Q_x. Since rm, tq e K, cm+q_x e K. Therefore cm+q_x^ 1, which implies

that cm+a_,=0. Therefore 0=rmcm+q^ = r2mtq_x+rm_i(rmtq)=r2mtq_x. Thus

(rmtQ_i)2=0, which implies that rmtq_x =0, since R isa semiprime ring. Also

tQ-i£(rJ*, so t^eK.
We continue this procedure arguing as follows at each equation. The

new V is in K because it is a linear combination of rm and of 'r's which

have been shown to lie in K. Thus it differs from 1, and therefore equals 0,

as the leading coefficient of p(x) is 1. Multiplication of both sides of the

equation by rm allows one to conclude that the next '/' annihilates rm,

and therefore that it lies in K. Thus tt e K, ;'=0, 1, • • • , q. But the coeffi-

cients off(x)g(x) are linear combinations of the 'f's, so all the coefficients

off(x)g(x) lie in K. This contradicts the fact that/>(x) is a monic polynom-

ial. Thus rm is a unit in R.

We now argue that R[x]jl is a free A-module by showing that

{I, x, x2, ■ ■ ■ , xm_1} is a basis for it. R[x]/I is an Z?-module under the

action rcp(f(x)) = cp(rf(x)). r^f(x) e I. Therefore

Ö = <F[r-V(x)]

= cn[xm + r-V^x"-1 + • • • + r"V + r-V0 • 1]

= xm + r-Vm_1im-1 + • • • + r~V + r-VJ.

As is well known, this implies that R[x]jlis generated as an T?-module by

{T, x, x2, ■ ■ ■ , x"'-1}. Suppose that J_T=o d¡x'=0 for some d¿eR,

7=0, I,--- ,m-\. Let h(x)=ZZ¿ d(xl. Then h(x) e I. Since f(x)

generates /, there exists a polynomialy'(x-) e R[x] such that h(x)=f(x)j(x).

lfj(x)y¿0, then the degree of h(x) is greater than or equal to m, because

f(x) is of degree m and because its leading coefficient is a unit. But the

degree of h(x) is less than m. Therefore j(x)=0, which implies that

h(x)=0. Thus i,=0 for all /. Thus {T, x, x2, ■ ■ ■ , .fm_1} is a basis for

R[x]jl, a free Ä-module.

(3) The general case. Let M = R[x]jI. Then 0-I-R[x]—M-0 is an

exact sequence of /^-modules. Since M is finitely generated, / contains a

monic polynomial. Therefore c(I)=R, which implies that M is a flat

/?-module by Lemma 1. Let TV be the prime radical of R, and tensor the

above sequence with R/N to obtain the sequence

(#) Q — I®RIN—R[x]®RIN—M®RIN — 0.

By [1, Proposition 4, p. 30], (#) is exact. (#) isa sequence of R/N-

modules.  Also KZRjNg^IjIN, R[x]^RjN^R[x]jR[x]N^(RjN)[x] and
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MgiR/N^M/MN as R/N-modules. We rewrite (#) as the exact sequence

0 -* I/IN -»■ (R¡N) [x] -*■ M/MN — 0.

/\/Aisasemiprime ring. Since 7\ is connected, so is R/N by [1, Corollary 1,

p. 132]. It is easy to verify that I/IN is principal and that M/MN is finitely

generated (as R/N-modules). Therefore by the semiprime case M/MN is a

finitely generated free R/N-module.

Let r be the rank of (M/MN)R/X. By Nakayama's lemma, a basis for

M/MN can be pulled back to a subset G of M of cardinality /-, which

generates M as an /?-module. Let F be a free /v-module of rank r. By

mapping a basis for F onto G and extending, one obtains a surjection

F-*/V/ of /(-modules. Let K be its kernel. Consider the following diagram:

0->    K    ->    F    ->     A/     -*0

I I I
0 — A7/aW -»■ F/FAT -»- A///WV ->- 0.

The second row is obtained by tensoring the first by the /«"-module R/N,

and making the usual identifications. The vertical maps are canonical.

The first row is exact by construction, and the second row is exact

because M is a flat /?-module. All of the squares commute.

F/FN g^F®R/N^ (® R) ® RIN =i © iR ® R/N) 3Ë © R/N,

a free R/N-module of rank r. But M/MN is free of rank r over /?/A.

Therefore K/KN=0, which implies that K^FN by commutativity. By

[1, 23(d), p. 66], ^=0. Therefore M^.F, a free module.

Definition 5. Let R be a ring. R is a semiconnected ring if \B(R)\ is

finite. This terminology is chosen in analogy with the definition of a

semilocal ring as a ring in which the number of maximal ideals is finite

(a ring is local if the number of maximal ideals is minimal).

A straightforward argument shows that a semiconnected ring is iso-

morphic to a finite direct product of connected rings, and that a module

over a semiconnected ring is canonically a finite product of submodules

over these connected rings. As a consequence Proposition 4 can be

generalized as follows:

Proposition 6. Let R be a semiconnected ring, let I be a principal ideal

of R[x] and let M=R[x]¡I be a finite R-module. Then MR is projective.

Let R be a ring and let 5 be an overring of R. Recall that an element

a e S is integral over R if a satisfies a monic polynomial equation with

coefficients from R.
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Proposition 7. Let Rbea ring and let R [a] be an integral extension ofR.

Let x be an indeterminate and let I be the kernel of the canonical surjection

R[x]—R[a]. Assume that I is a principal ideal of R[x]. Then R[a]R is flat.

Furthermore R[a]J{ is free if R is connected, and is projective if R is semi-

connected.

Proof. If a=0, then R[a] = R, which is a free Ä-module. Suppose that

a#0. Since R[a] is an integral extension of R, there exist r¿eR, 7=0,

1, • • • , 77, r„ = l, such that 2Lo »Vrf-O. By [4, p. 254], (R[a])R is finite.
Also since Jo ffX* e / and rn=\, c(I) = R. The result now follows from

Lemma 1 and Propositions 4 and 6.
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