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A  THEORY  OF  GRADE FOR  COMMUTATIVE RINGS1

S.  FLOYD  BARGER

Abstract. A theory of grade is developed using /{-sequences,

the Koszul complex and standard homological algebra. Most

results of interest are for finitely generated ideals.

The theory of grade as developed in [5] or [7] is restricted to Noetherian

rings. In all that follows rings are commutative with identity and modules

are unitary; however no chain conditions are assumed. This theory has

been applied in [1] to generalize [6].

Three notions of the grade of an ideal appear in the non-Noetherian

case. These are denoted c gr, k gr, and r gr as defined later. A slightly

stronger version of the following will be established.

Theorem. If I is a finitely generated ideal and E is an R-module with

IEjéE, then c gr(/, £)^k gr(/, £)^r gr(/, E).

1. Koszul complex and grade. Let / be an ideal in R and E an P-module

with IEt^E. Let c gr(7, E) be the length of the longest maximal P-sequence

on E in I. For {xx, ■ • • , xs} a finite subset of/, let g(xu ■ ■ • , xs\E)=s— t

where t is the largest integer so that the ith homology module of the

Koszul complex over E determined by xlt • • • , xs ¡s not zero. Let k gr(7, E)

be the supremum over all finite subsets {x1, ■ ■ ■ , xn) of the integers

g(xi, • • • , xn\E). For R Noetherian, c gr(7, £)=k gr(£ E). The common

value is the grade of / on E. The first proposition follows from the proper-

ties of the Koszul complex [7].

Proposition 1.    Let I and J be ideals, E an R-module with JE^E. Then

(1) IflZJ, kgr(/,£)^kgr(y,£).
(2) If(Xl, ■■■, xn)=J then k gr(7, E)<.n.

(3) cgr(7,£)^kgr(y,£).

An immediate consequence of Proposition 1 is that the length of an R-

sequence in an ideal / is bounded by the minimum number of generators
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of/. It is easy to see that for /finitely generated k gr(/, £)=0 is equivalent

to the statement: there exists /05^0, /„ in E, so that //0=0.

For u in /, u not a zero divisor on E, one can easily verify that

c gr(/, £/w£):Sc gr(/, £)—1. If the quantities involved are finite, one has

equality if and only if u is the first term of a longest maximal /^-sequence

on E in /. By applying Proposition 2 and Theorem 4 of Chapter 8 of [7]

one gets k gr(/, £)=k gr(/, £/«£)+1. The behaviors under polynomial

extensions are covered in the next two propositions.

Proposition 2. Let S be a faithfully flat extension of R, I an ideal on

R, E an R-module with IEj^E, then

(1) (/ ®R S)(E ®R S)?¿(E ®R 5), and

(2) k gr(7, £) = k gr(/ ®R S, E ®R S).

Proof. The key observation is that for vly • • • , vn in I ®RS, there

exist tu • • •, tminIso that (vx, ■ • • , vn)z(tx®l, • * • , tm®l). The remain-

der of the proof follows from properties of the Koszul complex and

faithfully flat modules [2].

If c gr(/, £)=0 and k gr(/, £)?*0 then for S=/?[x] and a», • • •, a„ in /

so that g(a0, • • • , a„|£)#0, one has a0+axx+- ■ -+anx" is not a zero

divisor on E®RS. Thus c gr(I ®RS, E ®RS)>0. As an extension of

this one has:

Proposition 3. Ifc gr(/, £)= F<«=k gr(/, £), then for some positive

integer t and for S=i?[.x1, • • • , xt] one has

c gr[/ ®R S,E®RS] = k gr[/ 0^ S, E ®R S] = n.

For /s/£ Rad /, it is easy to see that k gr(/, £) = k gr(y, £).

Let k be a field, let uf be an indeterminate for /^O, / in the ideal

generated by x0, ■ ■ ■, xn of k[x0, • • • , xj. Let T=k[x0, • • • , xn)[{uf}].

Let /i and /, be ideals generated by objects of the form fuf and u¡f,}

respectively. Let /?=7/(/1+/2) and ^{x^x^, where x0 represents

x0+(Ii+I2)- cgr(/, R)=0 and k gr(/, Ä)^0. Let K(au ••-,«„) denote

the Koszul complex determined by ax, • • • , an, and let Hi(K(ax, ■ ■ ■ , an))

denote the z'th homology module of K(ax, • • ■ , ar¡). One has

H0(K(ai, ■■■ , an)) = Rl(ai, ■■■ , a„),

and the exact sequence :

0 —* Hx{K{x0, xx)) —+ /?/(*„) ^ /?/(x0) —+ Rl(x0, xx) —»- 0.

Since xx is a zero divisor on Rl(x0), HxK(xQ, xx)^Q. So k gr(/, R)=\. In

like manner one can show k gr((x0, xx, ■ • ■ , xn), /?)=!.
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For another example, let & be a field and T=k[y, xu- • •, xn]. For

/t^O, / a polynomial in xx, x2, ■ ■ • , xn without constant term, adjoin an

indeterminate uf to Tforming 7\=T[{uf}]. Let 7t and 72 be ideals generated

by elements of the forms ufug and uf(y—f) respectively. Let P=ri/(7,+72)

and let l=(y, xlt ■ ■ •, x„). ra^c gr(7, 7?)^k gr(/, R)^n+l so n-\fk

k gr(/, R/(y))^n but c gr(/, R/(y))=0.

2. Homological representation. Rees [8] and [9] proved that in a

Noetherian ring R, cgr(7, £)=« provided n is the least integer so that

Extn(P/7, £)5¿0. Denote by rgr(7, £) the least integer « such that

Fxtfi(P/7, £)?*0. Rees [9] proves c gr(7, £)^r gr(7, £) and for m in /, u

not a zero divisor on £, r gr(7, £)= 1 +r gr(7, EjuE).

It is easy to see that r gr(7, £)=0 is equivalent to the statement: There

exist /n^O, l0 in £, so that 7/0=0. For I finitely generated both are equiva-

lent to k gr(7, £)=0. For I finitely generated and c gr(7, £)=k gr(7, £)

one can easily see that r gr(7, £)=k gr(7, £). This is not true for infinitely

generated ideals. For k a field and

R = k[Xi, x2,       , xn, • • '¡¡{Xi, x2, x3,       , x„, • • •)

and I=(x2, x8, • • • , xn, ■ ■ ■), c gr(7, P)=k gr(7, P)=0 but r gr(7, P)>0.

Proposition 4. For I finitely generated, one has k gr(7, £)=« where n

is the least integer such that ExtR(R/I, £00)5^0. 77ere £co is the direct sum

of count ably many copies ofE. Further k gr(7, £)^r gr(7, £).

Proof. The last remark follows from the first and £oo=£©£oo. By

Proposition 3, there is an integer s so that for S=R[xly • ■ ■ , xs] one has

k gr(7, £) = k gr[(7 ®R S), (£ ®R S)]

= cgc(I®RS,E®RS) = rgr(I®RS,E®RS).

By the homological identity

Ext£(P/7, £ ®R S) s* Ext£[S/7 ®R S, E ®R S],

the result follows. For a proof of the identity see Theorem 3.1 of [3].

A ring R is called coherent if every finitely generated ideal is finitely

presented. Properties of coherent rings are discussed in [4]. The next

proposition was suggested to me by M. Huckster who gave a proof of the

first part. As a preliminary, note that for R a ring and k an integer

0-*-K1—*Rk—>K-*O exact, the map Hom(P*, £00)—>-Hom(.K, £00) assigns

to a in Hom(P*, £co) a certain matrix map in HomCA^, £).

Proposition 5.   For I finitely generated:

(1) 7/k gr(7, £)= 1, then r gr(7, £)= 1.

(2) If R is coherent and k gr(7, £)=« then r gr(7, £)=«.
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Proof.   For / finitely generated and R coherent one has a long exact

sequence

0-/:->£„_1-£K_2->---->£1-/->0

with K finitely generated and F¡ free and finitely generated. This gives

0-+K^Fn_1^Fn_i^---^F1-+R-+RlI-»O.

One has Ext"(/?//, £oo)#0 where «=k gr(/, £). If r gr(/, £)?*« then one

has Extn(RII, £)=0. Thus Ext1^, £)=0 and Ext1^, £00)5*0. For Fn_x=

Rk, and 0->-K'->-Fk—>-K->-0 one gets, for K' finitely generated,

Uom{Rk, E) -U YLom(K', E) —> Ext(AT, £) = 0.

Thus / is onto. Now, this says every homomorphism K'->E is given by the

map (vx, ■ ■ ■ , vk)-*-'2, vih f°r (d» " ' " » 4) is a nxed element of Ek. Likewise

Hom(ffc, £00) -U. Hom(Jt', £00) —> Ext(/:, £00) —> 0

so y is not onto, thus there is a homomorphism g:K'-^>-E00 which is not a

matrix map. Since X' is finitely generated, Img^E™ some m, so g is

determined by its projections g¡, gf.K'-^E by gj=g°Trj, 7rJ:£oo^-£

(y'th projection) j= 1, • • • , m. Thus g,- is determined by (lx\ l^ , • • •, lk})).

Thus g is given by a matrix. It is noted that for part (1) one does not need

that R is coherent.
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