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PRIMITIVE  GROUP  RINGS

EDWARD  FORMANEK1  AND  ROBERT  L.  SNIDER

Abstract. Two theorems showing the existence of primitive

group rings are proved.

Theorem 1. Let G be a countable locally finite group and F a

field of characteristic 0, or characteristic p if G has no elements of

order p. Then the group ring F[G] is primitive if and only if G has no

finite normal subgroups.

Theorem 2. Let G be any group, and F a field. Then there is a

group H containing G such that F[H ] is a primitive ring.

All rings will be associative and have a unit. R is a prime ring if xRy^O

whenever x and y are nonzero elements of R. R is a (left) primitive ring if

there is a faithful irreducible (left) P-module. Every primitive ring is

prime, but not conversely. A group is locally finite if every finitely generated

subgroup is finite.

The prime group rings have been completely characterized by the

following result:

Theorem 1 (Connell [1, p. 675]). The group ring R[G] is prime if and

only if R is a prime ring and G has no finite normal subgroups.

Very little is known about primitivity in group rings. Almost no progress

has been made toward answering the general question, "When is R[G]

primitive?" posed by Kaplansky [2] and Passman [3, p. 136]. Some

negative statements are easy to make; for example, if R is a field and

G9a 1 is abelian or finite then R[G] is not primitive. Other negative results

have been obtained by Alan Rosenberg [4]. But there were no examples of

primitive P[C7] with G#l. This paper proves two theorems in a positive

direction.

Theorem 2. Suppose G is a countable locally finite group and F is a

field of characteristic 0, or characteristic p if G has no elements of order p.

Then F[G] is primitive if and only if it is prime.

Theorem 3. Suppose G is a group and F is afield. Then there is a group

H containing G Such that F[H] is primitive.
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Together with Connell's theorem. Theorem 2 provides a class of

primitive group rings, while Theorem 3 says there are a lot of primitive

group rings. The motivation for studying F[G] for G locally finite (and F

of acceptable characteristic) was provided by the following observation of

Lance Small : F[G] is von Neumann regular, so if G has no finite normal

subgroups, F[G] is either

(1) a group ring which is primitive, or

(2) a prime von Neumann regular ring which is not primitive.

That is to say, F[G] is something new! We are indebted to Susan

Montgomery for communicating Small's observation.

Theorem 4.    The following are equivalent for any ring R.

(a) R is left primitive.

(b) R has a maximal left ideal which contains no nonzero two-sided ideals.

(c) R has a proper left ideal A such that A+B= Rfor every nonzero two-

sided ideal B of R.

The simple proof of Theorem 4 is left to the reader. Criterion (c) will

be used in the proof of the next theorem.

A ring R is Artinian semisimple if it is a finite direct product of com-

plete matrix rings over division rings. Such an R has a finite set e1, ■ ■ ■ , ek

of irreducible central idempotents relative to which R is an (internal)

direct product of simple factors R=Re1x- ■ -xRek.

Theorem 2 is an immediate corollary of the following purely ring

theoretic result, taking R = F[G], R¡ = F[G¡], where G is expressed as the

union of an ascending sequence of finite groups G1c<J2c(73 • • • .

Theorem 5. Suppose R is the union of an ascending sequence

/?!<= P2c R3 ■ ■ ■ of Artinian sent ¡simple rings. Then R is primitive if and

only if it is prime.

Proof. Since all primitive rings are prime, it is enough to show that

if R is prime, it is primitive.

Let {eu e2, ■ ■ •} be an enumeration of all the irreducible central idem-

potents of all the /?,-. It is worth noting that the e¿ commute with each

other. Define a sequence of pairs (R„ ,fi), (Ä ,_/¿), ■ ■ ■ , where/ is an

irreducible central idempotent of/?„., inductively as follows.

Initial step. Let/1=e1 and Rtli be an R¡ in which ex is an irreducible

central idempotent.

Inductive step. Assume (Rni,fi), • ■ • , {R„,.-fk) have been chosen so

that the following three conditions are satisfied:

(1) ex 6 Rni, e2 e R„z, ■ • ■ ,ekeR„k.

(2) eJ^O, e,f2*0, ■■■ ,ekfk^0.

(3) /i • • -/,,#0.



1972] PRIMITIVE  GROUP  RINGS 359

Then choose (P >/h-i) as follows: Using the fact that R is a prime

ring choose r e R such that ek+lrf • ■ ■ fk^0, next, choose «fc+, so large

that ek+1, r e P„{ ; finally, let/fc+1 be an irreducible central idempotent

of P„ such that (ek+1rf ■ ■ "/J/h-i^O. Since fk+1 commutes with

rf\ ' ' 'fk '* follows that ¿Vi-i/t^TíO, /x • • 'fjc+i^O and the three con-
ditions are again satisfied for k+ 1.

Now let v4 be the left ideal of R generated by {1 —fu 1 —/2, • • •}.

(1) A is a proper ideal of R.

If not, there is an integer k and r1, ■ ■ ■ , rke R such that

(*) 1 = 'id ~/i) + • • • + r»(l -A).

/=/• ■ /s^0 and ( 1 —/)/=0 for /= 1, • • • , /c since the / are commuting

idempotents. Multiplying (*) on the right by/yields the contradiction

/-1-/-0.
(2) If 5 is a nonzero two-sided ideal of R, A + B=R.

For P. must contain some e¡ and hence some/ since eJ^O lies in the

simple factor P„ / of R„..

•M =d -fi)+fi£A + B.

By Theorem 4, P is primitive.

We conclude with a proof of Theorem 3. The construction we use yields

an extravagantly large group H containing the original group G. Passman

has pointed out how to modify the construction so that H and G have the

same cardinality in case G is infinite. However, the given proof illustrates

the idea in the most straightforward fashion.

Proof of Theorem 3. Define a sequence {G,} of groups and a sequence

{M¡} of modules inductively by

Gx = G, Mx - P[GX],

G, = Aut^/W,),        A/2 = P[G2] 0 A/l5

G3 = Aut^A/j),        A/3 = P[G3] e A/2)

CjCGjCC,--- , A/1t=A/2cA/3 ••• , and we let H=\J Git M=\J Mx.

Each M¿ is an PtGJ-module via the obvious action and this action makes

M an P[/Y]-module. Moreover, M is a faithful, irreducible F[//]-module,

which shows that F[H] is primitive. M is faithful because each Mt is a

faithful FfGJ-module. M is irreducible since each Mi is an irreducible

F[Gi+1]-module. (In fact, G1+1 acts transitively on the nonzero elements

of Mi, so H acts transitively on the nonzero elements of M.)
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