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Abstract. This paper describes a constructive method of

finding all congruences p on commutative cancellative archimedean

semigroups 5 without idempotents (A'-semigroups) such that Sip

is noncancellative and without idempotents. These congruences are

refinements of ^-congruences : a congruence r¡ is an N-congruence if

S¡r¡ is an N-semigroup.

I. Introduction. A commutative semigroup S is called archimedean if

every element divides some positive integer power of any other element:

if a, b e S then there exist c, de S and positive integers m. n such that

am = bc and bn=ad. Archimedean semigroups are classified into four

types: Tl, a nil-semigroup; T2, an ideal extension of a nil-semigroup by

a group; T3, Af-semigroups, cancellative without idempotent; T4, non-

cancellative without idempotent. Let S be an A^-semigroup. This paper

describes a way of constructing all congruences, p, on 5 such that Sjp is a

semigroup of type T4, or a T4 semigroup. Two motivations for this paper

are as follows: first, to contribute to the study of describing all congruences

on A^-semigroups; second, to give a method of generating examples of T4

semigroups.

Suppose S, an Ar-semigroup, is homomorphic by/onto F, a T4 semi-

group. Tamura [4] has proven that any T4 semigroup has a homomorphic

image which is an N-semigroup. So suppose Fis homomorphic by g onto

V, an TV-semigroup. Let p be the congruence induced by

f:p = {(x,y)eSxS:f(x)=f(y)).

Let r¡ be the congruence on 5 induced by the composite g °/, S/rj^V.

We have proven at this point that if an N-semigroup S has a T4 con-

gruence p then 5 has a proper T3 congruence r¡ (r¡ is not the identity

relation on S). Notice that the T4 congruence p is a refinement of the

proper T3 congruence r¡, or p^r\^i. Easily from this discussion, all T4

congruences on an /V-semigroup are found as refinements of proper T3
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congruences, or N-congruences. Theorems 2.3, 2.4 of this paper prove

that if an A-semigroup S has a proper Af-congruence then it has a T4

congruence, which is a refinement. Thus a necessary and sufficient condi-

tion for an Af-semigroup to have a T4 congruence is that it has a proper

Ar-congruence.

Not every A^-semigroup has a proper N-congruence. For example, let

S be the semigroup of positive integers under ordinary addition. If o is a

proper congruence on S, then it may easily be shown that S/p is finite. S

has congruences of both types Tl and T2.

Ar-semigroups, A^-congruences and T4 congruences on N-semigroups

can be described in terms of abelian groups and congruences on them,

the nonnegative integers under addition, and various functions from the

groups to the nonnegative integers. The first two functions are due to

Tamura [3], [6] ; they describe A^-semigroups and Ar-congruences. The third

function is the subject of this paper, and it tells how to refine an N-

congruence into a T4 congruence. We now describe Tamura's representa-

tion of an A^-semigroup.

Theorem 1.1. Let G be an abelian group and let N be the set of all

nonnegative integers. Let I be a fund ion from GxG into N which satisfies the

following conditions:

(1) I(g,h)=I(h,g)forallg,heG.
(2) I(g, h)+I(gh, i)=I(g, hi)+I(h, i)for allg, h, i e G.
(3) I(e, e)=l, where e is the identity of G.

(4) For every g e G there exists a positive integer n such that I(gn, g)>0.

Define a binary operation on S=NxG by

(m, g)(n, h) = (m + n + I(g, h), gh).

Then S is an N-semigroup, and every A^-semigroup has such a repre-

sentation.

In this paper all A-semigroups shall have the representation (G, I) of the

last theorem. Conditions (1) through (4) ofthat theorem will be called the

axioms for an /-function. In this paper e will denote the identity element

of G. In axiom (2) let g=h=e, and let i be arbitrary. One gets that

I(e,i) = 1. This fact is often used. Next we informally describe N-con-

gruences on N-semigroups.

Let r¡ be an A^-congruence on the A^-semigroup S=(G, I). The congru-

ence r¡ induces a congruence on G, a, as follows: goh if and only if there

exists (n,g), (m,h)eS such that (n,g)r¡(m,h). The congruence r¡ also

induces a function d from a into Z, the integers, defined as follows:

suppose goh, then there exist (n, g), (m, h) e S and (n, g)r¡(m, h); define
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d(g,h)=m—n. This function is well defined and will satisfy conditions

which we call ¿/-axioms. These remarks are formally stated in the following

theorem.

Theorem 1.2. Ifr¡ is an N-congruence on S= (G, I), then a congruence o

on G and a function d.from a into Z, the integers, are determined satisfying

the following conditions (the d-axioms):

(1) d(g,h)=-d(h,g),ifgah.
(2) d(g, i)=d(g, h)+d(h, i), ifgoh and hoi.
(3) d(ig, ih)=d(g, h)+I(h, i)-I(g, i), ifgoh and i e G.
Conversely, assume that a congruence a on G and a d-function on a are

given. Define r¡ on S by: (m,g)r¡(n,h) if, and only if, geh and n—m =

d(g, h). Then r¡ is an N-congruence on S, and every N-congruence is obtained

in this manner.

Suppose r\ is an TV-congruence on S=(G, I). Let a be the induced con-

gruenceon G. Suppose a=i, the identical relation. We shall now prove that

r\—i. From axiom (1) for ¿/-functions d(g, g)=—d(g, g)=0. Now suppose

(n,g)r¡(m,h). Then g=h and m—n, for m—n=d(g, h)=0. Easily then,

an N-congruence r\ is proper if and only if the induced congruence o on G is

proper. It should be remarked that to, the universal relation, is considered

proper unless of course i = u>.

Finally, we are ready to describe a third function, </>, on GxG which

shall describe T4 congruences. Recall that this function shall show how

to refine proper TV-congruences.

Definition 1.3. Let S=(G,I) be an TV-semigroup with proper TV-

congruence r¡. Associate with r¡ the pair (d, a). By a ¿/-function associated

with (d, a) is' meant a function ¿/ from o into the nonnegative integers

satisfying the following (the ¿/»-axioms):

(1) 4>(g,h)-4>(h,g)=d(h,g), ifgoh.
(2) (Transitivity). For any g, h, i e G with gahai, let k and j be the

nonnegative integers such that min{k,j}=Q, and <f>(h, g)+k = <j)(h, i)+j.

Then there exists a nonnegative integer m such that <j>(g,i)+m =

<f>(g, h)+k and <f>(i,g)+m = <j>(i, h)+j.
(3) (Compatibility). For all g, h, i e G, where gah one has that <f>(g, h)+

I(i,g)^(ig,ih).

(4) (Reflexivity). For all g e G, <¡>(g,g) = 0.

In the next section we shall prove four theorems about ¿/-functions. The

motivations for the axioms will reveal themselves within the proofs.

Terms not defined in this paper may be found in [1].

II. Congruences and ¿¿-functions. The first theorem describes how to

find a ¿/-function given a T4 congruence on an TV-semigroup. Recall that
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a T4 semigroup F always has a homomorphic image V which is an N-

semigroup. Explicitly, define r¡ on F by: x-ny if and only if there exists

c e Fsuch that cx—cy. Then 57 is a congruence, and T\r\ is an A^-semigroup.

The congruence r¡ is the smallest A-congruence on Fin that it is contained

in all other A-congruences on F. The congruence r¡ can be defined on any

commutative semigroup, and it is the smallest cancellative congruence

defined on that semigroup [2], [4].

Theorem 2.1. Let S= (G, I) be an N-semigroup with a T4 congruence 0.

Let r\ be the smallest N-congruence on S such that p^rj (this exists by the

previous discussion). Associate with r¡ the pair (d, a), and define <j> on o as

follows: <f>(g, h) = min{n: (n, g)p(m, h) for some ni). Then this function is a

^-function.

Proof. We first prove that the group congruence p induced by p is

equal to a, where gph means there exist n, m such that (n,g)p(m,h).

Since pe r¡, we have that p^o. We now prove the reverse inclusion.

Suppose goh. From the above discussion on smallest cancellative con-

gruences on S¡p we have: [k, w][n, g]p[k, w][m, h], for some k, n, m,

where [n, g] denotes congruence class of p containing (n, g). Thus

[/, wg\p[j, wh] for some l,j, and wgpiwh. Since p, is a group congruence,

we have w~1(wg)pw~1(wh), or gph. Thus ocp, or p = o. Thus <f> is defined

on a.

We now prove that axiom (1) holds. Suppose that <f>(g, h)=m. Then

there exists n such that

(a) (m,g)p(n,h).

We shall show that n = cf>(h,g). Then since (m,g)r¡(n,h), (1) will be

proven. Certainly, k = <f>(h,g)—^n. Assume k<n, and let k+l=n. We

shall derive a contradiction. This will prove k—n. There exists s such that:

(b) (k,h)P(s,g), SO S = cf>(g,h).
By compatibility for p we have:

(c) (l-\,e)(k,h)P(l-l,e)(s,g), or

(d) (l+k,h)P(l+s,g).
Using the fact that pc»¡ and (a) and (d) we have:

(e) n-m=d(g, h) = (l+k)-(l+s)=n-(l+s).

Thus m=l+s; since s—<f>(g, h)=m, 1=0, or k=n, which is the con-

tradiction.

We now prove the second axiom. We shall assume /=0, the case k=0

being the same. Thus we have:

(f)4>(h,g)+k=cp(h,i).
Suppose k=0. In this case, we have:

(<f>(g, h), g)P(4>(h, g), h) == (<p(h, i), h)p(<f>(i, h), /).
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By transitivity:

(g) (<Kg,h),g)p(<Pa,h),i).
Thus  <f>(g, i)^<j>(g, h),  or there exists  a  nonnegative  integer m such

that:

(h) <p(g,i)+m = <j>(g,h)+k.

If A:>0 the same argument is true by using compatibility with (Ar—1, e) as

multiplier. In either case then equation (h) is true.

We derive equation (i), which follows by substitution, using (f), (h)

and using the fact that ¿/ satisfies axiom (1).

(i) 4>(i,g)+m = <f>(i,h).
Start by substituting into equation (f):

(j) d(g, h) + cp(g, h)+k = d(i, h) + <p(i, h).
Using the first two axioms for d, replace d(g, h)—d(i, h) with d(g, i):

(k)d(g,i)+<p(g,h)+k=<f>(i,h).
Now let d(g, i)=cj)(i,g)—cf>(g, i), and use (h) to finally derive (i). This

completes the proof of axiom (2).

We now prove that axiom (3) holds. In part one we proved:

(0 (<p(g,h),g)P(<j>(h,g),h).
Since p is compatible, multiply both sides by (0, /) to get:

(m) (<f>(g, h)+I(i, g), ig)P(<¡>(h, g)+I(i, h), ih).   '
Thus it follows that <f>(g, h)+I(i, g)^<f>(ig, ih).

The fourth axiom holds since trivially (0, g)p(0, g).   Q.E.D.

The next theorem allows one to construct a congruence from a ¿/-func-

tion.

Theorem 2.2. Let S=(G, I) be an N-semigroup, and let r¡ be a proper

N-congruence on S with associated pair (d, a). Let ¿/ be a (^-function

associated with (d, a). Define p on S as follows: (n, g)p(m, h) if, andonly if:

(1) goh.

(2) There exists a nonnegative integer k such that n = <f>(g, h)+k and

m = (j>(h,g)+k.
Then p is a congruence on S. One easily notes that p^r¡.

Proof. Since <j>(g,g) = 0 for all g e G, it follows that p is reflexive. Also,

it is easy to see that p is symmetric. We now prove transitivity.

Suppose (n,g)p(m,h) and (m,h)p(k,i). The following equations

follow from the definition of p. Since />£ r\, gai.

(a) n = 4>(g, h)+s.

(b) m=<f>(h,g)+s=<j>(h,i)+t,s,t^0.
(c) k=<f>(i,h)+t.

Next we use (2) for ¿/-functions:

(d) <f>(h,g) + u=<p(h, i)+vmin{u, v}=0.
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There exists a nonnegative integer ir such that:

(e) <p(g,i) + w=<p(g,h)+u.

(0  4>(i,g) + w=<t>(i,h)+v.
Using (a) and (e) we obtain n = <f>(g, i) + w—u+s.

Using (c) and (f) we obtain k=<p(i, g)+w—v+t.

Since min{u, v}=0, it follows that s=u, and t^.v (subtract (b) and (d)).

Thus w—u+s and w — v+t are nonnegative. We shall now show that these

two expressions are equal. We do this by showing that s — t = u—v. These

equations follow from (b) and (d). From what has now been proven, and

the easy fact that gai, we have that (n, g)p(k, i).

We now prove compatibility. Again we need that p<~r¡. Suppose

(n, g)p(m, h). We must prove that (k, i)(n, g)p(k, i)(m, h), where (k, i) is

an arbitrary member of 5. More explicitly, we must show that

(k+n+I(i, g), ig)p(k+m+I(i, h), ih). This last pair is r¡ related, since r¡

is compatible. We must show the following:

k + n + I(i, g) = <f>(ig. ih) +u,       u^ 0,

k + m + ¡(i, h) = <f>(ih, ig) + u.

Now since (n,g)p(m,h), there exists r^O such that n = <p(g. h) + t and

m = <j>(h, g) + t. To complete the proof consider the following:

w = k + <f>(g, h) + t + /(/, g) - cp(ig, ih),

V  =  k   +   <p(h, g) +  t  +  I(i. h)  -  Cp(ih, ig).

We show that w = v, and that u'^0; of course w = u. Now w is greater

than or equal to zero by axiom (3) on cf>. To show w=v, form w—v,

substitute d expressions for <p differences, and then use axiom (3) for d-

functions.    Q.E.D.
Let r¡, with (d, a), be an A^-congruence on an A^-semigroup S. It is

obvious that distinct cfj-functions associated with r¡ will produce distinct

congruences o as in Theorem 2.2. Also, let o be a T4 congruence and r¡

the smallest A^-congruence containing p. Let <f> be determined as in

Theorem 2.1, and let 6 be determined from <f> as in Theorem 2.2. Then

p=0.
It may be noted that any congruence p on 5 induces a group congruence

o on G: goh if, and only if, (n, g)p(m, h), for some n, m. Thus p induces a

group congruence a. Also from the definition of <p in Theorem 2.1, we see

that (f> is only dependent upon o, and not upon any r¡ which might contain

o. Although we do not follow this point, it is possible to define ¿-functions

from T4-congruences and their induced group congruences. The produced

Ar-congruence, r¡, will be contained in all N-congruences containing p.

Let p be a refinement of r¡, an ^-congruence on an A^-semigroup S.
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Easily, S/p is either an TV-semigroup or a T4 semigroup, for S/p is homo-

morphic onto Sj-n which has no idempotent, hence S/p has none. Not

every ¿/-function will cause a proper refinement of an TV-congruence (see

Example 2.5). The next theorem describes this situation.

Theorem 2.3. Let S= (G, I) be an N-semigroup with an N-congruence rj.

Let -n be associated with the pair (d, o), and let <¡>be a ^-function associated

with (d, a). A necessary and sufficient condition for ¿/ to cause a refinement

(as in Theorem 2.2) of r¡ is that there exist g, h eG such that goh and

4>(g, h)^.<j>(h, g)^. 1. In this case the congruence induced by ¿/ is T4.

Proof. Let p be the induced congruence by ¿/. Easily, p£ -n. We now

prove sufficiency. Assume there exists g, h eG such that <f>(g, /?)^¿/(/i, g)^

1. Then (cj>(g,h)—l,g)-r¡(<f>(h,g)—\,h), but this pair is not p related.

(In a sense ¿/-functions determine a threshold for refinement.) Thus it has

been proven that p^i).

In this case Sjp is not cancellative, for (<f>(g, h)—\,g)p(<j>(h,g)—\, h),

but (0, e)(<f>(g, h)-1, g) = (4>(g, h), g)p(<p(h, g), h) = (0, e)(4>(h, g)-1, h).
Thus in Sjp one has that ax=ay but x^y.

We now prove necessity by proving the contrapositive; in this case if

goh then either <f>(g,h)=0, or <j>(h,g)=0. We now prove that p=r¡.

Suppose that (n,g)r¡(m,h). Then m—n=d(g, h)=(f>(h, g)—cj>(g, h) and

goh. If d(g, h)=0, then m=n, and <j>(h, g)=<f>(g, h)=0. Thus (n, g)p(m, h).

Suppose d(g, h)>0. Then we must have that 4>(g, h)=0. Thus m—n =

4>(h,g), or m = <f>(h,g)+n; also, n=<f>(g, h)+n. Thus (n,g)p(m,h). The

case where d(g, /V)<0 is similar.    Q.E.D.

The following theorem shows that if an TV-semigroup has a proper

TV-congruence r¡ then r¡ has an infinite number of refinements which are

T4-congruences. These refinements form a chain with respect to inclusion.

Theorem 2.4. Let S=(G,I) be an N-semigroup with a proper N-

congruence r\, where as usual r¡ has the associated pair (d, o). Define ¿/ on

(d,o)by:
<p(g,g) = 0,

<f>(g,h) = d(h,g) + m    ifd(h,g)^0,

= m otherwise.

Then <f> is a ^¡-function for each m=0, 1, 2, • ■ • .

Proof. To verify the first two axioms for ¿/-functions we only need the

first two axioms for ¿/-functions: (1) d(g, h)=—d(h,g); (2) d(g,i) =

d(g, h) + d(h, i).
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We now verify that <f>(g, h) — <f>(h, g)=d(h, g). Consider three cases:

(1) d(g,h)>0; (2) d(g,h)=0; (3) dig, h)<0. We only prove case (1).

In this case m — (d(g, h)+m)=—d(g, h)=d(h,g).

We now verify the second axiom. Suppose the following:

(A) <f>(h,g)+k=<f>(h,i)+j, where min{A.,;"}=0.
We must find a nonnegative integer t such that <p(g, i)-\-t = <p(g, h)+k

and <f>(i,g)+t=(f>(i, h)+j. Let u=<p(g, h)+k-<p(g, i), and let v=<p(i, h)+
j—<p(i,g). We shall prove two things which complete the proof: (1) u=v;

(2) w^O. Of course u—t. We now prove (1).

(a) d(i,h)+d(h,g)=d(i,g).

(b) d(k,g) + 4>(Ii,i)-<Ki,h) = 4>(g,i)-<Ki,g).
(c) d(h, g) + <j>(h, <)+j-<p(g, i)=<f>(i, h)+j-<p(i, g).
(d) d(h,g) + <f>(h,g)+k-<p(g,i) = v.
(e) u=<p(g, h)+k-<f>(g, i) = v=<f>(i, h)+j-cf>(i,g).

Step (d) follows from (c) by using (A). We now prove (2).

t = u = <f>(g, h) + k- <f>(g, i) = <f>(i, h) +j- <f>(i, g).

Simply note that t^.0 because either cf>(g,i)=m,  or cf>(i,g)—m, and

<f>(x,y)—m, Xy£y. The proof is trivial if g, h, i are not distinct. We now

prove the third axiom.

One must prove the following:

(B) cp(g,h)+I(i,g)^cp(ig,ih).

Multiply (3) in the axioms of the ¿/-function by —1; then use (1) of

those axioms to produce the following:

d(h, g) - I(h, i) + Kg, i) = d(ih, ig).

Since the /-function is nonnegative and symmetric one obtains:

(C) d(h,g)+Ki,g)=d(ih,ig).
Using (C) with the various substitutions one can make for <p in (B),

one easily proves the desired result. For example, suppose d(h,g)<0 and

d(ih,ig)>0. By (C) one has that I(i, g)>d(ih, ig). Substituting for <p in

(B) gives: m+I(i,g)=d(ih, ig)+m.   Q.E.D.
Example 2.5. Let N be the positive integers under addition, and let

C2={e, a) be the cyclic group of order two. Then S=NxC2, the direct

product, is an A-semigroup. S may be represented by the pair (C2,I),

where I(x,y)— I. The map/such that/(«, g) = (n— 1, g) is an isomorphism

between the two representations, where the domain is Nx C2. Let -n be the

projection of Sonto N. The induced congruence a on C2 is co, the universal

relation. The induced ¿/-function is identically zero. In Theorem 2.4, If

we took (f> with m=0, we would get <j> identically zero.
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Example 2.6. This example shows that not every ¿/-function associated

with (d, a) is found as in Theorem 2.4. The TV-semigroup S is defined on

C3, the group of order 3.

a   a- a   a-

e

a

a"

1     1 1
1    3 2

1    2 0

/

0 -1
1 0

0    -1

d

0    1    1
0 0   0
1 1    0

0 1 0
0 0 0
0    1    0

¿/0, m = 0

Here o=co on C3.

In conclusion, we have shown that an TV-semigroup S can have a T4-

congruence if and only if it has a proper TV-congruence. We have shown

that all T4-congruences are refinements of proper TV-congruences, and

every proper TV-congruence has such a refinement. Using the ¿/-function

we have established a connection between (d, o) representations of TV-

congruences and T4-congruences.
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