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TIME DEPENDENT NONLINEAR CAUCHY PROBLEMS
IN BANACH SPACES

W.  E.  FITZGIBBON

Abstract. The method of product integration is used to obtain

solutions to the nonlinear evolution equation u'(t)+A(t)u(t)=0

where {A(t):t G [0, 7"]} is a family of nonlinear accretive operators

mapping a Banach space X to itself. The main requirements are

that R(I+ XA(t))^cl(D(A(t))), D(A(t)) is time independent, the

resolvent (/+¿/í(r))-Ix satisfies a local Lipschitz condition, and

that each A(t) satisfies Condition M.

This paper is concerned with the existence of solutions to the evolution

equation

u'it) + Ait)uit) = 0;       w(0) = x,

where Ait) is a nonlinear accretive operator on a Banach space. This

equation has been the subject of much activity within the last five years.

Several authors have studied existence theory (e.g. T. Kato ([6], [7]),

J. Mermin ([10], [11]), R. Martin ([8], [9]), V. Barbu [1], H. Brezis and

A. Pazy [2], M. Crandall and T. Liggett [3], and G. Webb ([13], [15])).

The author is grateful for the opportunity to see preprints of the afore-

mentioned manuscripts of Crandall and Liggett and Brezis and Pazy.

Special appreciation is due G. F. Webb for suggesting the problems

contained herein. The author wishes to thank the referee for his helpful

suggestions and criticisms.

Definition 1.1. An operator A is said to be accretive provided that

\\ix+XAx)-iy+XAy)\\^\\x-y\\ for x, y e DiA) and X^O. Kato [7] has
shown that this definition is equivalent to the statement that

ReiAx - Ay,f) ^ 0

for some/e £(x— y) where £ is the duality map from X to X*.

It is clear that H+XA)"1 is a function having domain D;=RiI+XA).

We denote JÀx=iI+XA)-1x for X>0 and  let A?_x=X-\I-J>)x.  The
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following facts are well known:

WxX-JtfW <||x-/||.

Il/.x - x\\ < X \Ax\    for x G D, C\ D(A).

AJ;X — A)X        for x e Dx.

\\Axx\\ ̂  \\Ax\\       for x e Dx n D(A).

The following result is due to Crandall and Liggett [3] :

Theorem A.    Let {Ait): te [0, T]} be a family of accretive operators.

Assume that the following conditions hold:

(1) DiAit)) is independent oft.

(2) RiI+XAit))^diDiAit)))forO<X<X0andte [0, T].
(3) M(î)x||^|M(t)x|| + |/+t|L(||x||)(1 + |M(t)x||)/7/- t, re[0, T) and

x e D(A(0)).

(4) \\iI+XAit))-lx-iI+XAÍT))^x\\^X\t-T\Li\\x\\ + \\Air)x\\)for !,t6
[0, T] and x e D(A(0)).

Here L: [0, co)—»-[0, co) is an increasing function. Then

[í/tTl]

u(t) = lim HC + «»¿(/e«))-1*

exists for x e F»(^(0)), eni0, such that en^T¡n, and t e [0, T].

We shall refer to the above limit as a product integral.

In the course of the proof of Theorem A one establishes the existence

of a constant Mix) such that

(1.3)
¿=i

(1.4)

tlii + MO'or1 J ^ Mix),
¿=i "

A(u) fi (/ + MOE,))-1 J ^ M(x),

whenever 0^/^fr/eJ, en is sufficiently small, and u, t e [0, T].

Definition 1.5. An operator A is said to satisfy Condition M pro-

vided that whenever {xn}Ç.D(A), x„->x0, and sup ||y4xJ|<co, then

x0 e L>iA) and Ax0=w—lim Axn. This condition was introduced by

R. Martin in [9].

Definition 1.6. A function u:[0, T)-*X is a strong solution to the

Cauchy problem

(1.7) du{t)ldt + A{t)u(t) = Q,       m(0) = x,
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provided that u is Lipschitz continuous on each compact subset of [0, T),

w(0)=x, u is strongly differentiable almost everywhere, and duit)/dt+

Ait)u(t)=0 for a.e. t g [0, T).

Theorem 1.8.   Let {Ait):te [0, T]} be a family of accretive operators

satisfying Condition M such that the following are true :

(1) DiAit)) is independent of t.

(2) RÜ+XAit))scliDiAit))).

(3) \\iI+XAit))^x-iI+XAir))^x\\^X\t-r\Li\\x\\)il + \\Air)x\\),where

t, r G [0, T], X>0 and L: [0, co)->[0, co) is an increasing function.

Then the Cauchy problem (1.7) has an unique strong solution for xe

DiAiO)) on [0, T).

Proof.   To ascertain that the conditions of Theorem A are met we

modify L by defining L1(m)=£(1+m)(1-(-m). Thus,

\\il + XAit))-ix - il + XAir)rkx\\

Z%X\t-r\ £(||x||)(l + M(t)x||)

< X \t - t| £(1 + ||x|| + M(r)x||)(l + llxll + M(t)x||)

i% X \t - t| LHIIxl! + \\Air)x\\).

To see that the third condition of Theorem A is satisfied, we observe that

Condition M together with (1.2) yield A,it)x—±Ait)x as X[0. Thus

| M(Í)X|| - \\Air)x\\ | ^ M(t)x - A(r)x\\

^liminfMA(i)x-/lA(^il

¿|r-r|L(||x||)(l + M(t)x||)

^ |r - t| LXllxllXl + M(r)x||).

Hence the conditions of Theorem A are met and the product integral

«(o=iimn(/ + £^(,'en)r1^
7i-*00       X

exists for t G [0, T] and for £„J,0 such that en^T¡n.

We now define a sequence of step functions,

(lio) u!,(i)=n(' + a¡a^ ifí^o,

= x    if í < 0.
By observing that

iutß) - u£ß - En))¡En = -A,ni[tisn\en)uCnit - en)

= -Ai[tlsn]sn)ue(t),
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we obtain a solution to the approximate equation

(1.11)    iucJ\t) - Utn(t - sn))lsn + Ai[tlen]en)uEnit)=0   and    «,,(0) = x.

If we apply any linear functional /e X* to (1.11) and integrate over

(0, t) we obtain the equation,

f*   iujs),f) ds - ixj) + ÍWs/ejejiijs),/) ds = 0;       «JO) - x.
Jt-en Jo

From the above equation we obtain

f   (««.(»),/) ds = ixj) - f'(X(s)aJs),/) ds
Jt-tn JO

J W)»..(i) -
m(0) = x.

„)««„(«)

Now we apply (1.9) to see that

AJo
04(sXn(s) - ¿([s/ejejujs),/) ds

^ £nimax{|s/£n - [s/eB]| L^Hh^HXI + M(sKo(s)||)} ||/|| ^ £„ß(x)
SetO.i]

for some constant 2?(x)>0. Since «£n(i)->«(;) and \\Ait)ueJ[t)\\ is bounded,

Condition M insures that Ait)utJ[t)-^Ait)uit). Thus we can take limits of

(1.12) as £„j0 to derive the equation

(1.13) (u(i),/) = ixj) -J\a(s)u(s)J) ds;       u(0) = x.

We can verify the strong measurability of Ait)u{t) by observing that

Ait)uit) is the weak pointwise limit of a sequence of piecewise continuous

functions Ait)utJ[t). Thus Ait)u{t) is strongly measurable and bounded,

hence, Bochner integrable.

From (1.13) we obtain the equation

w(r) = w(0) -    ,4(s)u(s) ds

and hence that

duiOldt + A(t)u(t) = 0   for a.e. t e [0, T).

To see that accretiveness guarantees uniqueness we apply the methods

of Kato [7]. Suppose «(/) and i?(?) are solutions satisfying the initial
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conditions w(0)=a and y(0)=¿>. Set x(i)=«(0—»(0, then -l-d\\xit)\\2ldt=

-ReiAit)u(t)-Ait)vit),f)^0,    where   /e£(x(0).   Since    ||x(0ll2    is

absolutely continuous i|x(0ll2=||x(0)||2=||a-£||2.

Two immediate corollaries follow from Theorem 1.8.

Corollary 1.14. Let X be a reflexive Banach space and let

{Ait):t G [0, £)} be a family of demic/osed accretive operators which satisfy

(l)-(3) of the theorem. Then the Cauchy problem (1.7) has a unique strong

solution.

Proof. We need only observe that a demiclosed accretive operator

in a reflexive Banach space satisfies Condition M.

Corollary 1.15. Let{Ait):t e [0, T]} be a family ofaccretive operators

such that Ait) is continuous from the strong to the weak topology of X. If

Ait) satisfies conditions (l)-(3) with the added condition that D(/1(0) is

closed, the Cauchy problem (1.7) has a strong solution.

Theorem 1.8 may be applied to time dependent perturbations of linear

equations.

Theorem 1.16. Let A be a closed, densely defined m-accretive linear

operator from a reflexive Banach space to itself For each re [0, T], let

Bit) be a continuous, nonlinear, everywhere defined accretive operator from

X to itself such that 5(00=0 for all t e [0, T]. We further require that

Bit) satisfies the local Lipschitz condition

||5(0* - 5(r)x|| < |/ - t| I(||x||)

where L is an increasing function L: [0, co)—>[0, cc). Then there exists a

unique strong solution to the perturbed equation,

du{t)¡dt + Au(t) + Bit)u(t) = 0.

Proof. In [16], Webb shows that for t e [0, T) the operator ,4+5(0

is /^-accretive, i.e., RiI+).iA+Bit))) = X for /^0. The local Lipschitz

condition on Bit) provides the local Lipschitz condition on the resolvent.

Thus, by virtue of Corollary 1.14, we need only show that A is demiclosed.

Let {x„}c DiA) and suppose that xn—*-x and Aixn)-^y. By a theorem of

Mazur there exists a finite set of real numbers {a,), a>.0, T a,= l, such

that Tû^^jj-tj and hence Aiy_a.¡xn+f)-*y. However 2a,xB+i-»-x

and thus the closedness of A implies Ax=y.
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