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COREFLEXIVE  AND  SOMEWHAT  REFLEXIVE
BANACH SPACES

JAMES   R.   CLARK1

Abstract. A coreflexive Banach space is shown to have many

of the same properties as a quasi-reflexive space. An infinite dimen-

sional reflexive subspace of a Banach space with boundedly complete

basis and separable dual is constructed, and it is noted that some-

what reflexive Banach spaces need not be coreflexive.

0. Introduction. Let A" be a Banach space and let X* and X** denote

the first and second conjugate spaces of X. If Q denotes the canonical

map of X into X**, then [2] X is quasi-reflexive of order n if

dim X**IQ(X)=n. We say that X is coreflexive if X**)Q(X) is reflexive

and that X is complemented coreflexive if Q(X) is complemented by a

reflexive subspace of X**. A somewhat reflexive Banach space [7] is a

Banach space in which each infinite dimensional closed subspace contains

an infinite dimensional reflexive subspace. Herman and Whitley [7] give an

example of a somewhat reflexive space which is coreflexive. In this paper

we investigate the conjecture that a necessary and sufficient condition for

somewhat reflexivity is coreflexivity (complemented coreflexivity). In §2

we develop some properties of coreflexive spaces, many of which hold for

quasi-reflexive spaces. In §3 we give a proof that every Banach space with

boundedly complete basis and separable dual contains an infinite dimen-

sional reflexive subspace. This theorem is a consequence of a theorem in

[9], however our proof involves an interesting constructive process so we

include it here. Using results of [9] we are able to prove that if X is a

Banach space such that X**jQ(X) is separable, then A'and X* are some-

what reflexive. Finally we note that somewhat reflexive spaces need not be

coreflexive and pose some unanswered questions.
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1. Notation and definitions. If A' is a Banach space and Q is the

canonical isomorphism into X**, we let H(X) = X**IQ(X). For M a

subset of X, M° will denote the annihilator of M in X*. If M is a subset of

X*, °A7 denotes the annihilator of M in X. A one-to-one, bicontinuous,

linear map Tfrom A'onto Fis called an isomorphism, and A'and Tare

said to be isomorphic, denoted X~ Y. If T is also norm-preserving, X

and Y are said to be congruent, and we write X= Y. By "subspace" we

will always mean "closed subspace." The closed unit ball of X will be

denoted Sx.

2. Coreflexive Banach spaces. We begin by obtaining some results

which extend certain theorems of Civin and Yood [2] to coreflexive

spaces.

2.1 Theorem. Let X be a Banach space and M a closed subspace of X,

then

(a) X is coreflexive if and only if M and X\M are coreflexive,

(b) X is coreflexive if and only if X* is coreflexive, and

(c) H(X) is reflexive and separable if and only if H(X*) is reflexive and

separable.

Proof, (a) Suppose X is coreflexive. By [2, p. 908], H(M)~Q(X) +

M(M!Q(X)and H(XlM)^X**IQ(X) + M00. Since subspaces and quotients

of reflexive spaces are reflexive, M and X\M are reflexive.

Conversely if Q(X) + M00¡Q(X) and X**IQ(X) + M00 are reflexive, then

77(A") is reflexive [6, p. 72].

(b) By [5, p. 1066], Q(X*) is complemented in X*** by Q(Xf. Since

H(X)* = Q(X?~H(X*) [6, p. 72], H(X) is reflexive if and only if H(X*)

is reflexive.

(c) The proof is immediate from the proof of (b) and the fact that a

Banach space is reflexive and separable if and only if its dual is reflexive and

separable.

By considering the proof of 2.1, we also may conclude that for conjugate

spaces, the notions of coreflexivity and complemented coreflexivity coin-

cide. In fact a complemented coreflexive space is necessarily isomorphic to

a conjugate space. The following theorem characterizes complemented

coreflexive spaces.

Recall that by a total subspace V of X*, we mean a subspace such that

°K={0}. For Va total subspace of X*, we say that A"is V-pseudo-reflexive

[13] if the map Tfrom A'into V* defined by (Tx)f=f(x) for/in V is an

isomorphism onto. We let o(X, V) denote the weakest linear topology on

X that makes each/in V continuous.
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2.2 Theorem.    Let X be a Banach space. The following are equivalent.

(a) X is complemented coreflexive.

(b) There exists a total subspace V of X* such that X*\ V is reflexive

and an equivalent norm ||| • ||| on X such that 5 A- is a(X, V) compact.

(c) There exists a total subspace V of X* such that X is V-pseudo-

reflexive.
(d) There exists a total closed subspace V of X* such that X*\V is

reflexive and Sx is a(X, V) conditionallv compact.

Proof. (a)->-(b). If £ complements Q(X) in A'**, £ must be a(X**, X*)

closed [14, p. 232]. Thus K=°£ is a total subspace of A"* and (X*¡V)* = E

is reflexive [14, p. 232]. By [5, pp. 1064-1066], X may be given an equiv-

alent norm such that 5V is o(X, V) compact.

(bHcWd). [13, p."77].
(d)->(a). If 5V is conditionally a(X, V) compact, Vo complements

Q(X) [5, pp. 1065-1066]. Since V° = (X*IV)*, Vo is reflexive.
We note that we do not know if subspaces of complemented coreflexive

spaces are complemented coreflexive. However, complemented subspaces

of complemented coreflexive spaces are necessarily complemented co-

reflexive. This follows from the fact that complemented subspaces of a

space complemented in its second conjugate space are themselves com-

plemented in their second conjugate. Since such subspaces are necessarily

coreflexive, they must necessarily be complemented coreflexive.

The question arises whether X coreflexive implies that X is comple-

mented coreflexive. An affirmative answer to this question would imply

that a coreflexive space is necessarily a conjugate space of all orders, a

property enjoyed by quasi-reflexive spaces [2]. Indeed if this were the case,

coreflexivity would be sufficient for somewhat reflexivity. For if M is an

infinite dimensional subspace of X, we have A/~K** for suitable Y.

If Y is quasi-reflexive. M contains an infinite dimensional reflexive

subspace [7, p. 291]. If Y is not quasi-reflexive, the infinite dimensional

reflexive complement of Y provides the desired subspace.

We note that an example of a non-quasi-reflexive space which is a

conjugate space of all orders is the I2 sum [4, p. 31] of a quasi-reflexive

space. This example is also somewhat reflexive [7, p. 293].

2.3 Theorem. A coreflexive Banach space can contain no subspaces

isomorphic to c0, c or any of their conjugates. In particular, a coreflexive

Banach space with an unconditional basis is reflexive.

Proof. Any subspace of a coreflexive space is coreflexive, however

neither c„ nor any of its conjugates are coreflexive. To see this, assume c0

is coreflexive, and thus c*=ß is also coreflexive. Now c* is complemented
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in m*, so there is a continuous projection of m* onto I1. But H(ft) is

infinite dimensional, contradicting [15, p. 253]. Thus c0 cannot be co-

reflexive, and c, which is isomorphic to c0, cannot be coreflexive.

If a Banach space with an unconditional basis contains no subspace

isomorphic to c0 or I1, it is reflexive [4, p. 74]. In particular a coreflexive

Banach space with an unconditional basis is reflexive.

We conclude this section with a theorem which has been proved for

both quasi-reflexive [2] and somewhat reflexive spaces [7].

2.4 Theorem. Let T be a continuous linear map from a coreflexive

space X into I1 ; then T is compact.

Proof. If £ is a bounded linear map from X into ll, T*, the adjoint

of T, is a bounded map from I1* to X*. By 2.1 and 2.3, T* cannot have

bounded inverse on any subspace isomorphic to c0. Since (l1)*=m may be

viewed as a C(5)-space, it follows that T* must be weakly compact

[12, p. 35]. Thus T is weakly compact by Gantmacher's theorem [6]. In

I1, however, weak and norm convergence of sequences are the same

[4, p. 33], so £is compact.

3. Somewhat reflexive spaces. The next theorem and its corollary are

special cases of [9, Theorem 4.2]; however, our proof involves an inter-

esting constructive process so we have included it here.

3.1 Theorem. If X is a Banach space with boundedly complete basis

and separable dual, X has an infinite dimensional reflexive subspace.

Proof. It suffices [4, pp. 67-70] to show that a Banach space Y with

shrinking basis and separable second conjugate space has an infinite

dimensional reflexive quotient.

If ([£,]) is a dense sequence of cosets in H(Y), we may choose a maximal

linearly independent subsequence ([77J). Now (Q(b¡)) forms a u'*-basis

for y**, so we may assume that each representative Hi is given by

GO

(1) 77,. =«,. 2 auQ(b,)   and    a,,, = 0,        1 ̂  j < 2'.

Define a sequence (h¡ k) by

*m = a,-.iÔ(*>i) + al¡2Q{bu   and

(2) V,=    2   OiMbù       k = 2,3,---.
i-s'-'+i

By (1) we note that h¿.k=0 for k<i. Also, H¡=m, 2S-i hi¡t, /= 1, 2, • ■ • .
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Let M be the closed linear span of (hik) in Y. For any integers n and

i such that 2"+1^2^2"+1, it follows that b¿ is in M if and only if there

exists a sequence (dimn) of scalars such that

(3) lim

M.2"

d,

where the matrix on the right in (3) has all zero entries except a 1 in the

(/—2")th row. It is easy to see that if scalars exist such that (3) holds for

all integers i, 2"+l^/^2"+1, then the coefficient matrix must have rank

2". Since this is an obvious contradiction, it follows that for each positive

integer n, there is at least one integer /, 2" + l ^/^2"+1 such that b¡ is not

in M. Given a positive integer n, choose one such bt . We claim that

([¿>,J) is linearly independent in Y\M. For if [0]= £*-i ak[bin ], then

bin = — ̂ ¡ax(7J=2akbin )+m, for some m in M. Let (B¡) be the sequence

of linear functionals such that Bi(bj)=èi ¡. For t—in , some q, and ally"

such that 2"+l<r, j^2"+\ we have ôjt—Bj(bt)-\\mm ILid,,m,kakJíor

a suitable sequence of scalars (dimk), contradicting the choice of b, (3).

Thus Y\M is infinite dimensional.

To show that Y\M is reflexive, we show that Q(Y)+Moa is dense in

Y** [2, p. 908]. Since each Ht is in M00 [14, p. 232], it follows that every

F¡ is in Q(Y)+M00. Because ([F,]) is dense in H(Y), Q(Y) + M°° is seen

to be dense in Y**.

3.2 Corollary. A Banach space with boundedly complete basis and

separable dual is somewhat reflexive.

Proof. Any infinite dimensional subspace M contains a subspace

isomorphic to a subspace with a block basis [1, p. 157]. Such a basic

sequence is necessarily boundedly complete. By Theorem 3.1, M contains

an infinite dimensional reflexive subspace.

The proof of Theorem 3.1 relies on (1) the separability of H(Y) and (2)

the fact that (Q(bf) forms a w*-basis for Y**. One can easily see that the

construction fails if we do not demand that X* be separable as, for

example, I1*.

Johnson and Rosenthal [9] prove the theorem: IfX** is separable then

both X and X* are somewhat reflexive. The next theorem extends this result

to nonseparable Banach spaces.

3.3 Theorem. Let H(X) be separable. Then X and X* are somewhat

reflexive.
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Proof. It suffices to show that separable subspaces of X and X* con-

tain reflexive subspaces. If M is a separable subspace of X, M** is separ-

able [11, p. 121]. By [9], M contains a reflexive subspace. If M is a

separable subspace of X*, we may consider a dense sequence (/„) in M.

For each n, there is a sequence (x„f) in Sx such that lim¿ \fn(xni)\= ||/J|.

If N is the closed linear span of (xni), the restriction of/in M to N is an

isometry of A7 into TV*. Since TV** is separable [11, p. 121] and M is

isomorphic to a subspace of TV*, the result follows from [9].

We note that the converse to Theorem 3.3 is false. If 5 is an uncountable

set and if X is the I2— (S)-sum [4, p. 31] of a quasi-reflexive space of

order 1, X is somewhat reflexive. This is a consequence of the fact that

separable subspaces of X can be considered as a subspace of an /2-sum of

quasi-reflexive spaces, which is somewhat reflexive [7, p. 293]. However,

77(A') is not separable.

3.4 Theorem. If H(X) is reflexive and separable, each conjugate of X

is somewhat reflexive.

Proof. If y is a conjugate of X, H(Y) is reflexive and separable (2.1).

Theorem 3.4 implies that T is somewhat reflexive.

3.5 Example. A somewhat reflexive space need not be coreflexive

(complemented coreflexive). If X is the space B* constructed in [8] and

[10], B* is somewhat reflexive, but /7(7?*)~/w.

It was noted in [3] that quotients and duals of somewhat reflexive

spaces need not be somewhat reflexive. The question is open whether X*

somewhat reflexive implies that X is somewhat reflexive. However, it is

interesting to note that there exist Banach spaces X and Y such that

X*~ Y* and X is somewhat reflexive but Y is not somewhat reflexive.

For example, let X=B3* [8] and Y=B3*Qc0. Since X* = B3®11 and T* =

Ba©P@P, X* and Y* are isomorphic. Now Y contains c0, so Y cannot

be somewhat reflexive.

We conclude with some unanswered questions.

(1) If Xis separable and coreflexive, is it the case that H(X) is separable?

(2) Does every non-somewhat reflexive space contain a subspace

isomorphic to cQ or I1!

If the answer to either of these questions is affirmative, coreflexivity

implies somewhat reflexivity. Finally we ask:

(3) Every quasi-reflexive space is a dual. Is every somewhat reflexive

(coreflexive) space a dual?
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