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CONCERNING COMPLETABLE MOORE SPACES1

G. M.  REED

Abstract. The author obtains a generalization of well-known

theorems due to Younglove and Fitzpatrick concerning the ex-

istence of dense metrizable subspaces in complete and completable

Moore spaces. Based on this result, a new class of noncompletable

Moore spaces is presented. In particular, an example of a separable

noncompletable Moore space is given.

A (complete) Moore space is a space which satisfies Axiom 0 and has a

(complete) development satisfying the first three parts (all) of Axiom 1

in [5]. The completely regular (complete) Moore spaces are precisely the

(Cech complete) semistratifiable p-spaces [3]. A Moore space is com-

pletable provided that some complete Moore space contains it as a

subspace. Each complete Moore space which is metrizable is completely

metrizable [9]. However, there are examples of Moore spaces which are

not completable ([10], [11], [7] and [6]).

A development G = (G1, G2, • • •) for the Moore space S is said to

satisfy Axiom C at the point p of S if and only if, for each open set D

containing p, there is a positive integer n such that each element of Gn

intersecting an element of Gn which contains p is contained in D. If G is

a development for the Moore space S, then C(G), the set of all points at

which G satisfies Axiom C, is, if nonempty, a metrizable G^-subset of S

([4] and [12]).

In [12], Younglove proved that if G is a development for the complete

Moore space S then C(G) is dense in S. Fitzpatrick showed in [2] that a

development G for the completable Moore space S need not satisfy Axiom

C at any point of 5 but that each completable Moore space does have a

dense metrizable subspace.

The main result of this paper is Theorem 1 : Each completable Moore

space S has a development G such that C(G) is dense in S. This improves

Fitzpatrick's result in view of an example, given by the author in [8],
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of a Moore space S which has a dense metrizable subspace but for which

there exists no development G such that CiG) is dense in S. Using Theorem

1, the author is able to improve upon some other results concerning

completable Moore spaces: (1) Theorem 2 establishes that each com-

pletable Moore space in which there does not exist an uncountable

discrete collection of mutually exclusive open sets is separable. Armentrout

had shown in [1] that each completable Moore space in which there does

not exist an uncountable collection of mutually exclusive open sets is

separable. (2) Theorem 3 establishes the existence of a separable non-

completable Moore space. Ott in [6] had obtained the same result under

the assumption of the continuum hypothesis which is not required here.

Notation. If H is a collection of point sets, then H* denotes the union

of the elements of H.

Theorem 1. Each completable Moore space S has a development which

satisfies Axiom C at each point of a dense subset of S.

Proof. Suppose S is a subspace of the complete Moore space F.

Then S, regarded as space, is a complete Moore space. Thus, consider

the complete development Gl5 G2, ■ ■ ■ for 5.

For each positive integer i, let Z/, denote a maximal collection of

mutually exclusive elements of Gf such that H* is dense in S. For each

element R in Ht and each positive integer j, let Rj = {p G R\ifg G G¡ and

peg, then g is contained in R}. Note that each Z\3 is closed in S and

R = \Jf=1 Rj. By Theorem 162 in [5], no open set in a complete Moore

space is the union of countably many closed sets no one of which con-

tains a nonempty open set. Thus for each R in Ht, denote by uR a non-

empty open set in S which is contained in Rm for some positive integer m.

Now, if each of i and y is a positive integer, let Ua = {uR\R g H¡ and uR

is contained in Z?,}. It follows that each £/;j is a discrete collection of open

sets in S. Thus, for each pair of positive integers /' andy", denote by Ku

a subset of 5 which contains exactly one point of uROS for each uR in £/!3.

Consider K=(JtLx \Jf=i^a- Since K is the union of countably many

point sets K{j such that each is covered by a discrete collection of open

sets intersecting it at only one point, it follows from the proof of Theorem

5 in [2] that there exists a development G' for 5 which satisfies Axiom C

at each point of K. It remains only to show that K is dense in 5.

To see that K is dense in 5, consider the countable collection

{H*, H2, • • •} of open sets each dense in the complete Moore space S.

By the proof of Theorem 164 in [5], it follows that f]?=x H*=M where M

is a dense subset of 5. But M is contained in R. For if p g M and p is

contained in the open set D, there exists a positive integer n such that

each element of Gn containing p is contained in D. Since p G H*, then
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p e R for some R in Hn and uR, which contains a point of K, is contained

in D. Thus K is a subset of S which is dense in £ and there exists a develop-

ment G' for 5 which satisfies Axiom C at each point of K. It follows that

G'l, G2, • • • , where for each /, G'¡ — {gr\S¡gin G¡} is a development for

S which satisfies Axiom C at a dense subset of S.

In [8], under the assumption of the continuum hypothesis, the author

gave an example of a Moore space in which there exists an uncountable

collection of mutually exclusive open sets but in which there exists no

such collection that is also discrete. Thus Theorem 2 is a generalization of

Theorem 2.1 in [1].

Theorem 2. Each completable Moore space S in which there does not

exist an uncountable discrete collection of mutually exclusive open sets is

separable.

Proof. It follows from Theorem 1 that 5 has a development G such

that C(G) is dense in 5. But in such a space, the existence of an uncountable

collection of mutually exclusive open sets implies the existence of such a

collection that is also discrete. For suppose that there exists an uncount-

able collection H of mutually exclusive open sets in S. Let M be a subset

of S containing one point of hr\C(G) for each h in H. For each positive

integer /, let M{={p e M|each element of G¿ intersecting an element of G¿

which contains p is contained in the element of H which contains p} and

let U¿={st(p, Gt)\p e M¡}. Note that for each /', Ut is a discrete collection

of mutually exclusive open sets. And since A/=U¿ti Mt, there must

exist a positive integer fe such that Uk is uncountable.

Thus the completable Moore space S satisfies the hypothesis of Theorem

2.1 in [1] and is therefore separable.

Theorem 3.    There exists a separable, noncompletable Moore space X.

Proof. In [8] the author gave an example of a Moore space S for

which there exists no development G such that C(G) is dense in S. Thus,

by Theorem 1, it suffices to show that there exists a separable Moore

space X which has S as a subspace. Such a space X will now be constructed

by "sewing" onto 5 countably many tangent disc spaces (i.e., Neimytzki

planes).

1. Points of S. The points of 5 are precisely all sequences (px, p2, ■ ■ ■,

pk, • • •) of nonnegative real numbers such that pk>0, pt is rational for

/<fe, and Pi=0 for ;>fe. For convenience we will express a point p of

S as /)=(/?!, p2, ■ • ■ , pk, 0, • • •) where fe is the greatest integer such that

pk is positive.
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2. Regions (basic open sets) of S.   Suppose « is a positive integer and

p=ipx,pz, " " " ,Pk, O» ' ' ") is a point of S. (i) If pk is irrational, then let

rlip) = {(Pi, Pi,'-, Pk-x, 4> <i+i» 0, • • •) in S |

0 ^ 4+1 ̂  I/«, 4 - P* + 4+1 and £ is rational},

rlip) = {iPx, Pi,'-', Pk-i, 4, 4+1. 4+2, 0, • • •) in S | there exists

(Pi, P* • • •. P*-i> 4> 4+1, 0, • ■ •) in r?(p), 0 ^ 4+2 ̂  1/n,

4+1 = 4+1 + 4+2, and 4+1 is rational},

r?ÍP) = {iPu Pi,-', Pk-i, 4- 4+1, ' • • , 4+í-i, 4-+¡, 0, • • •) in S | there

exists ipx, p2,'-', Pk-i, 4, 4+1, ' ' " , 4+<-2, 4+i-i, 0, ' ' ')

in rlxip), 0 ^ 4+i ̂  V", 4+.-1 = £« + 4+i,

and 4+i-i is rational},

and continue this process to define r"ip) for each positive integer y. Let

gn{p)=\J%irnÂp)v{p}. (ii) If pk is rational, let

f\(p) = {(Pi, P2, • • •, Pt, •   •, pm, 0, • • ) in S | m > fc,

0 < /?, <; 1/n   for ¿ < i <; m}
and

râ(p) = U {gn(q) | ? = Oh, <Ii, • • •, qm, o, • • 0

in r"ip) and qm is irrational}.

Let gn(p)=rî!(/))U/-2(/')u{/?}. Now, g is a region for S if and only if there

exist a positive integer « and a point p of S such that g=gnip).

For each positive integer /, let G¿={g¿(/>)|/7 e S}. For each positive

integery, letG,.= U,™ ,- G¿. It follows that S is a Moore space and Gx, G2, ■ ■ ■

is a development for S.

3. Construction of X. As noted in [8], S is the sum of countably many

"lines" where each line can be expressed as {ipx,p2, • • ■ ,pk-x,y,Q, ' ' ")

in S\y is a positive real number} where k is a positive integer and pt is a

fixed rational number for 1 ̂ i<k if k> 1.

Consider the subset M of the upper plane such that M={ix, y)\x>0

and j^0}. To each Une L as above associate a unique copy ML of Af

such that L is identified with the nonnegative x-axis in ML.

Now for each line L, consider ML as a subset of the plane with the

usual topology. Suppose « is a positive integer andp is a point of ML. (i) If

p is a point in ML not in L, let gnip) denote the common part of ML and
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the interior of a circle about p with radius equal to the lesser of 1/« and

the ordinate of p. (ii) \f p=ipx, p2, • ■ ■ ,pu-i,y, 0, • • •) is a point of L

such that v is irrational, let wn(/>) denote the common part of ML and the

interior of a circle of radius 1/« lying wholly above the x-axis and tangent

to the x-axis at p together with the point p.

Note that for each point p=ipx,p2, ■ ■ ■ ,pk, 0, • • •) in S such that

pk is irrational, un(p) is uniquely defined for each positive integer «. Also,

since there are only countably many lines in S, {ML\L a line in 5} is

countable.

4. Points of X. Let X be the set to which p belongs if and only if p is

a point of S or p is a point of ML for some line L in S.

5. Regions of X. Suppose « is a positive integer and p is a point of X.

(i) If p = ipx, p2, • • ■ ,pk, 0, • • •) is a point of S such that p,. is irrational,

let

h„(p) = g,,(p) u (U {»„(?) | ? 6 £„(/>)»•

(ii) If p = (p1, p2, ■ ■ ■ , pk, 0, ■ • •) is a point of S such that pk is rational,

let

K(P) = gn(p) U (U {''»(?) I qegjp) and </ = (ft, ft, • • •, c/m, 0, ■ • •)

in S where qm is irrational}).

(iii) \fp is a point of ML for some line L and/? is not in L, let hn(p)=gn(p)

6. Properties of X. For each positive integer /, let H'i = {h¡(p)\p e S}.

For each positive integer/ let Hj={J?=¡ H¡. It follows that A' is a Moore

space and //,, H2, • ■ ■ is a development for A'. Also, since each open set

in X contains a subset which is open (with respect to the topology of the

plane) in ML for some line L in S, then X is separable. Finally, the space

S is a subspace of X, thus X is not completable.
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