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NONNEGATIVE  MATRICES  WHOSE  INVERSES
ARE M-MATRICES

THOMAS  L.  MARKHAM

Abstract. A characterization of a class of totally nonnegative

matrices whose inverses are A/-matrices is given. It is then shown

that if A is nonnegative of order n and A'1 is an M-matrix, then

the almost principal minors of A of all orders are nonnegative.

I. Introduction. Suppose A = (au) is a matrix of order n. We write

,4^0 if ao_:0 for each pair (i,j). A is called totally nonnegative (totally

positive) if all minors of all orders of A are nonnegative (positive).

Finally, if A is totally nonnegative, and a power of A is totally positive,

then A is said to be oscillatory (see [2], [3] for pertinent results).

Fiedler and Pták gave the following characterization of M-matrices in

[1], which we shall use as a definition.

Definition 1.1. Suppose A is a real nxn matrix with nonpositive off-

diagonal elements. Then A is an M~-matrix if and only if A is nonsingular

and A~^0.

In §11, we offer a characterization of a class of totally nonnegative

matrices whose inverses are A/-matrices. We prove in §111 that if .4^0

and A-1 is an M-matrix, then the almost principal minors of A of all

orders are nonnegative.

II. ^^0 with A totally nonnegative. All matrices considered are of

order n. Let Ai ¡ be the submatrix of A of order n— 1 obtained by deleting

row i and column j.

Theorem 2.1. Suppose A is a nonsingular, totally nonnegative matrix.

Then A-1 is an M-matrix if and only if det(A ¿ j)=0 for i+j=2K, where K

is a positive integer, and ij^j.

Proof. Suppose A~1 = (a.ij) is an M-matrix. Then oc0^O for i^tj. But

a.ij = [(—\)i+i det(Aj i)]jdet(A). Since A is totally nonnegative, we have

det(^í¿)^0 and A nonsingular implies det(/4)>0. Thus we have

det(^3-¿)=0 for i+j=2K and i^j.
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If det(Aji) = 0 for i+j=2K and i^tj, then clearly a.,.^0 for iftj. The

fact that A-1 is an Af-matrix now follows from Definition 1.1.

Next, we examine a special class of oscillatory matrices with the property

that each element has an M-matrix as its inverse. We call A = (aij) a

matrix of type D if

f«<.        '=/>     ,
au = where an > an_x > • • • > ax.

[a„        i>j,

It was shown by the author in [3] that ax>0, then a matrix of type D is

oscillatory.

Theorem 2.2. Suppose A is a matrix of type D with fl11>0. Then

dtl(Au)=bfor\i-j\>\.

Proof. Since A is symmetric, we shall assume j>/+l. If i=l, then

the second column of Ai, is a multiple of the first column and det(A¡ ,)=0.

If/=«, then the last two rows of Ain are identical and detL42_n)=0. We

assume .'#1 andj^n. Let

where Bx is (i— 1) X (/+1) and Bt is of order (« — .') x (n — i—2). (Note that

«Si 4 here.) Using the Laplace expansion for det(At ¡) and expanding by the

last n—i rows of At ¡, we see that 2 columns must always be chosen from

B3 since Bi contains only n — i—2 columns. But in B3 all columns are

multiples of the first column. Thus in the sum of the determinants in the

Laplace expansion, each term is zero, and hence det(^¿ 3)=0. The proof

is complete.

Theorem 2.3. Suppose A = (ai}) is a matrix of type D with au>0. Then

A~l is a tr¡diagonal M-matrix.

Proof. A-1 is tridiagonal, since det(A{ j)=0 for |i—y"|>l, and A-1 is

an M-matrix by Theorem 2.1 and Definition 1.1.

111. Nonnegativity of almost principal minors of matrices whose inverses

are Af-matrices. Gantmacher and Kreïn defined the term almost principal

minor in their study of totally nonnegative matrices [2]. We shall use the

following definition: If a and ß are strictly increasing sequences on

N={1 ,-••,«} of the same length, then A(a.\ß) is the minor of A with rows

indexed by oc and columns indexed by ß. We say that A(a.\ß) is an almost

principal minor of A if in the sequence |a—/?| = (|a1—ßx\, • • ■ , \clk—ßK\)

exactly one term is nonzero.
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Our main result is the

Theorem 3.1.   If A^.0 and A-1 is an M-matrix, then the almost prin-

cipal minors of A are nonnegative.

First, we prove the

Lemma.   //

where An is of order n—l, and if A x is an M-matrix, then Axx exists and

is an M-matrix.

Proof.   To demonstrate that AX1 is nonsingular, we partition A*1

conformably with A as

*- - («;: *:) - «

Immediately we obtain the relation

(1) AUBXX + AX2B2X = /.

Since AX2B21 is of rank at most one, its characteristic polynomial is

p(m) = det[m/ - A2XB21]

= m""1 — [trace(^12Jt?2,)]m"-2.

Thus jP(l)=det(/-^l12521)= 1 + 2¿Ti ain\bni\^ 1. This implies that AXXBXX

is nonsingular. Thus both AX1 and BX1 are nonsingular, and from (1), we

get

(2) All = BU(I - AxiB2X)-\

We show next that C=(I—AX2B2X)~1 is an A/-matrix, and finally that BUC

is an M-matrix.

It is easy to verify that C=(ci}) where

cu ={l+ 2ain |fcBi|)/det(/ - AM   for all i,

Cu = ainbjdet(l - Ax2B2l)   for i ^ j.

Hence C has nonpositive off-diagonal elements, and C_1=(/— A12B21)^.0.

So C is an A/-matrix. Also, Bxx is an M-matrix since A-1 is an M-matrix.
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Let d—det(I— A12B2X). For iftj, we have

n-l

(^n)¿,3 = ¿ bikckj

k=l

= -  Z bikaknbnj + bJl + Z avn \bnv\)
d(k*j \ v*i J)

'f(lbikaJ+Ml+nfapn\bnp\).
d \k*j I        à \       p^j I

K
d

From BA=I, we obtain 2k^i biKakn--bija}n-btnan^O, and so

(^u).-,jsO f°r if^j- Axx is an M-matrix since AX1^.0, and the lemma is

proved.

There is nothing special about the fact that A1X is contained in con-

secutive rows and columns 1,2, ■ • ■ ,n—\. For if £ is a principal sub-

matrix of A^.0 of order «—1, we can simultaneously permute rows and

columns of A such that

E      Ex2PAP

and PAPT^-0. It is clear that if A-1 is an A/-matrix, then PA~XPT is an

M-matrix by Definition 1.1. Hence we state the

Corollary. // A^.0 and A~x is an M-matrix and if S is a principal

submatrix of A of order n—\, then S~x exists and is an M-matrix.

We return to the proof of Theorem 3.1.

The almost principal minors of A of order n—\ are nonnegative since

Ki+i=° and bi+i.i^° for ' = 1, • • • ,«-1, i.e. det(Aii+x)^0 and

det(Ai^XJ)^.0 for /=1, • ■ ■ , n—\, and these exhaust the almost principal

minors of order n— 1.

Any almost principal minor of order n — 2 or less is contained in a

principal submatrix, S, of A of order n—\. The proof is completed by

using induction.

The condition of Theorem 3.1 is not sufficient for A~x to be an M-

matrix. Suppose
'1    1

Then /12:0 and the almost principal minors of A are nonnegative. In fact,

A is oscillatory. A~x is not an A/-matrix since det(A%x)=\ and Theorem

2.1 does not hold.
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