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Abstract. The purpose of this paper is to give necessary and

sufficient conditions for an abstract ring to be isomorphic to the

endomorphism ring of a reduced complete torsion-free module

over a complete discrete valuation ring.

In [3] we have characterized the endomorphism rings of reduced

complete torsion-free modules over (not necessarily commutative) com-

plete discrete valuation rings. By generalizing the Harrison-Matlis

duality of [1] and [4] to the noncommutative case, this work simultane-

ously characterizes endomorphism rings of divisible torsion modules.

The model for our main result was Wolfson's beautiful characterization

of the ring of all linear transformations of a vector space over a division

ring in [5]. The purpose of this note is to show how Wolfson's theorem

can be used directly for the characterization of the endomorphism rings

of these modules.

Wolfson's theorem. Let E be a ring and £0 its right socle. Then

the following are equivalent:

I. £ is isomorphic to the ring of all linear transformations of a vector

space over a division ring.

II. (1) £0 is not a zero-ring, and is contained in every nonzero two-sided

ideal of E.
(2) If L is a left ideal of E which is annihilated on the right only by zero,

then £0c¿.

(3) The sum of two left (right) annihilators is a left (right) annihilator.

(4) £ possesses an identity element.

Definition. A ring which satisfies condition I or II in the theorem

above is said to be a Wolfson ring.
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Let £ be a ring. We endow E with the /-adic topology by taking the

powers J{E)n (n=0, 1, 2, • • •) of its Jacobson radical J(E) as a basis of

neighborhoods of 0; this makes E a topological ring.

Theorem. Let E be a ring with Jacobson radical J(E). Then the following

three properties are equivalent :

I. E is isomorphic to the endomorphism ring of a divisible torsion

module over a complete discrete valuation ring.

II. E is isomorphic to the endomorphism ring of a reduced complete

torsion-free module over a complete discrete valuation ring.

III. (1) E is Hausdorff and complete in its J-adic topology.

(2) EIJ(E) is a Wolfson ring.

(3) J(E)=pE—Ep, where p is either zero or a nonzero-divisor of E.

Proof. The equivalence of I and II and the implication H->-III were

proved in Theorems 5.5 and 5.6 of [3]. It remains to show that III implies

II.

Assume now that (l)-(3) of III are valid. If p=0 in (3), then there is

nothing to prove in view of Wolfson's theorem. We shall henceforth

•assume that p^O. First, we wish to prove that E possesses an identity

element. Put £=£/./(£), and for a e E let ä denote the natural image of a

in Ë. We know that £, being a Wolfson ring, has an identity/ Since E is

Hausdorff and complete in its J-adic topology, idempotents modulo J(E)

can be lifted (see e.g. [2, pp. 124-125]). So we may assume that/2=/e E.

Naturally we claim that/is the identity of E. To see that, write E=fE®N

where N={x—fx\xeE). Then the right ideal N must be contained in

J(E). In fact, N must be the zero ideal. Assume O^y e A^. Then, by

hypothesis (3), there exists z^O in E such that y=zp. It also follows from

(3) that we can write z=z'pn for suitable n eZ and z' $J{E). Clearly

z $ N. Also z' <£/£ since otherwise y—z'pn+1 efE. We can therefore write

z'=a+b with O^aefE and 0#Z> e N. Now y=z'pn+1=apn+1+bpn+1

with apn+1 efE and bpn+1 e N. Hence apn+1=0, which contradicts our

hypothesis that/» is not a zero-divisor. It follows that N=Q, which means

that/is a left identity for the ring £=/£. By symmetry,/is also a right

identity for E. Hence/=1 is the identity for the ring E.

Next we wish to establish an important property of the so-called

minimal nonradical right ideals of E. As in [3] we call a right ideal H of E

minimal nonradical if H itself is not contained in •/(£), but every right

ideal of £ which is properly contained in H lies in /(£). Let us show the

existence of minimal nonradical right ideals in £ Since £ is a Wolfson

ring, there exists a minimal right ideal ëË in £ with ê2=ëe£. We can

choose eeE such that e2=e because idempotents modulo /(£) can be
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lifted. Then the isomorphism

eEe/J(eEe) = eEe¡J(E) n eEeg* eEe + J(E)/J(E) = ë£ë

shows that eEe/J(eEe) is a division ring. Consequently, eE is a minimal

nonradical right ideal in £, by virtue of Lemma 9.1 in [3]. Moreover, the

technique of lifting idempotents can be used to show that every minimal

nonradical right ideal of £ has the form eE with e2=e e £. This latter fact,

however, also follows from hypothesis (3) and the Hausdorffness of £,

as was demonstrated in Lemma 7.1 of [3].

Suppose now that £ is a two-sided ideal of £ which is not contained

in J(E). Let eE be any minimal nonradical right ideal of £, e2=eeE.

Since £ is a Wolfson ring, it follows that B contains the right socle of

£. Now eE=ê£ is a minimal right ideal in £. Therefore, ë e B, and we

can find y e/(£) such that e+y e B. Since 14- y is a unit in E, we see

that

e = e{\+ y)(\ + y)'1 = (e + ey)(\ + y)~x = e(e + y)(l + y)-1 e B.

Hence e£s£. Accordingly, if £0 denotes the sum of all minimal non-

radical right ideals of £, we may sum up our conclusions thus far by

saying that

(4) £0 is not a zero-ring and is contained in every nonradical two-sided

ideal of £.

It was shown in [3, pp. 167-168] that (1) and (3) together with property

(4) imply the existence of a reduced complete torsion-free module 77 over

a complete discrete valuation ring 7? such that £ is isomorphic to a subring

of the ring ER(H) of all 7v-endomorphisms of 77. More precisely, 77=e£

and R=eEe, where eE is a minimal nonradical right ideal of £. The

action of the Tv-endomorphism induced by the element a e E is simply

right multiplication of the elements of Tí by a within the ring £

It remains to show that £ is isomorphic to the full ring ER(H). Since

77 is a minimal nonradical right ideal of £, the right ideal H=èË must be

minimal in £. Moreover, H=HjpH where p denotes the unique prime

element of the ring R (see [3, pp. 167-168]). Of course, £ induces a

certain ring of ë£e-endomorphisms of the ë£ê-vector space ëË, again by

right multiplication. This must be the full ê£é-endomorphism ring, ac-

cording to the proof of Wolfson's theorem in [5]. It follows at once from

Theorem 5.6 in [3] that a subring S of ER(H) is dense in £#(77) in the

y-adic topology if and only if S induces the full 7v//>7v-endomorphism ring

in HjpH. Therefore, our hypothesis (1) implies that E^ER(H), and now

the proof is complete.
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