PERIODIC SOLUTIONS OF SMALL PERIOD OF SYSTEMS OF *n*TH ORDER DIFFERENTIAL EQUATIONS¹

KLAUS SCHMITT

ABSTRACT. This paper consists of a study of the existence of periodic solutions of systems of *n*th order ordinary differential equations using tools from degree theory.

1. **Introduction.** Let *I* denote the compact interval [0, T], $R = (-\infty, \infty)$ and let $f: I \times R^{nm} \to R^m$ be continuous. We consider the differential system

(1.1)
$$x^{(n)} + f(t, x, x', \dots, x^{(n-1)}) = 0,$$

and give conditions which ensure that (1.1) has periodic solutions of small period, i.e., conditions which ensure the existence of a constant ω_0 , $0<\omega_0\leq T$, such that for every ω , $0<\omega\leq\omega_0$, (1.1) has a solution x(t) such that

(1.2)
$$x^{(i)}(0) = x^{(i)}(\omega), \quad i = 0, \dots, n-1.$$

The considerations in this paper are largely motivated by a paper of Seifert [7] where degree-theoretic arguments are used to prove the existence of periodic solutions (of small period) for the undamped oscillator

(1.3)
$$x'' + g(x) = p(t),$$

where g(x) is a general restoring force having the property that

$$(1.4) xg(x) > 0, x \neq 0, |g(x)| \to \infty as |x| \to \infty.$$

Using only simple results from ordinary differential equations and from degree theory (we use the theory as developed in [2] and [6]) we establish the following general principle.

THEOREM 1. Let there exist a nonempty bounded open set $A \subseteq R^m$ such that $f(0, x, 0, \dots, 0) \neq 0$ for $x \in \partial A$ and let $\deg(f(0, x, 0, \dots, 0), A, 0) \neq 0$. Then there exists ω_0 , $0 < \omega_0 \leq T$, such that for every ω , $0 < \omega \leq \omega_0$, (1.1) has a solution satisfying the periodic boundary conditions (1.2).

Received by the editors January 17, 1972 and, in revised form, April 17, 1972. AMS 1970 subject classifications. Primary 34C25; Secondary 34A40, 34B15. Key words and phrases. Periodic solutions, degree theory.

¹ Research supported in part by the U.S. Army grant ARO-D-31-124-71-G146.

Throughout the paper, we shall say that a differential equation has periodic solutions of small periods whenever the conclusion of Theorem 1 holds for that equation. Furthermore, we assume throughout that all solutions of the equation being considered exist on the basic interval [0, T], and $\|\cdot\|$ shall denote the Euclidean norm in R^m . No ambiguity will arise if we use the symbol 0 for the zero of all Euclidean spaces considered in this paper.

2. Corollaries.

COROLLARY 1. Let $f: I \times R^{nm} \to R^m$ be continuous and let there exist a constant r > 0 such that either

(i)
$$x \cdot f(0, x, 0, \dots, 0) > 0$$
, $||x|| = r$, or

(ii)
$$x \cdot f(0, x, 0, \dots, 0) < 0, ||x|| = r.$$

Then (1.1) has periodic solutions of small periods.

PROOF. Let $A = \{x \in R^m : ||x|| < r\}$. Then either condition (i) or (ii) above implies that $\deg(f(0, x, 0, \dots, 0), A, 0)$ is defined. Further, either of the conditions implies that the vector field $f(0, x, 0, \dots, 0)$, $x \in \partial A$, has the property that $f(0, x, 0, \dots, 0)$ and $f(0, -x, 0, \dots, 0)$ do not have the same direction for every $x \in \partial A$ and hence that $f(0, x, 0, \dots, 0)$ is homotopic to an odd vector field. It follows from the homotopy invariance theorem of degree theory (see [2] or [6]) and from Borsuk's theorem (see [6]) that $\deg(f(0, x, 0, \dots, 0), A, 0) \neq 0$. We may, therefore, apply Theorem 1.

COROLLARY 2. Consider the differential equation

$$(2.1) x^{(n)} + h(t, x, x', \cdots, x^{(n-1)}) + g(x) = p(t),$$

where $h:I\times R^n\to R$, $g:R\to R$, $p:I\to R$ are continuous and have the property that $h(0,x,0,\cdots,0)=0$, xg(x)>0 (<0) and $|g(x)|\to\infty$ as $|x|\to\infty$. Then (2.1) has periodic solutions of small periods.

PROOF. Since p is continuous, xg(x) > 0 (<0) and $|g(x)| \to \infty$ as $|x| \to \infty$, there will exist a constant r > 0 such that either

(i)
$$x(g(x)-p(0))>0$$
, $|x|=r$, or

(ii)
$$x(g(x)-p(0))<0$$
, $|x|=r$.

We may, therefore, apply the previous corollary to complete the proof.

REMARK. Taking $h \equiv 0$, n=2, we obtain the result of Seifert [7]. Also, if n=2 and h=k(x, x') we obtain the existence of periodic solutions of small period for the forced Lienard equation x'' + k(x, x') + g(x) = p(t).

REMARK. In the case of equation (2.1), it will be apparent from the proof of Theorem 1 that the constant ω_0 depends only on the left side of the equation and a bound on |p(t)|, $0 \le t \le T$. Thus if p(t) is a periodic function (in the usual sense) of period ω , $\omega \le \omega_0$, then the corresponding

periodic solution (whose existence is guaranteed by Theorem 1) may be extended periodically so as to yield a periodic solution (in the usual sense) of (2.1). A similar remark also holds for equation (1.1).

COROLLARY 3. Consider the nth order scalar equation

$$(2.2) x^{(n)} + f(t, x, x', \cdots, x^{(n-1)}) = 0,$$

where $f:I\times R^n\to R$ is continuous, and let there exist constants α , β , $\alpha<\beta$, such that either

- (i) $f(t, \alpha, 0, \dots, 0) \leq 0 \leq f(t, \beta, 0, \dots, 0)$, or
- (ii) $f(t, \alpha, 0, \dots, 0) \ge 0 \ge f(t, \beta, 0, \dots, 0)$,

with strict inequalities holding in either case for t=0. Then (2.2) has periodic solutions of small periods.

PROOF. In either case, $deg(f(0, x, 0, \dots, 0), (\alpha, \beta), 0) \neq 0$.

REMARK. Corollary 3 represents generalizations of some results in [4] and [5]. Case (i) extends Theorem 1 of [5] in the sense that no local Lipschitz condition is required and further that n need not equal 2. On the other hand, we need to assume here that strict inequalities hold for t=0 in order for $\deg(f(0, x, 0, \dots, 0), (\alpha, \beta), 0)$ to be defined. Case (ii) extends some special cases of results in [4] to higher order equations; however, the results in [4] are valid for arbitrary periods whereas Corollary 3 only guarantees the existence of solutions of small periods.

3. **Proof of Theorem 1.** Before proceeding with the proof, we need some terminology and some preliminary lemmas.

Let $y = (x, x', \dots, x^{(n-1)}), F(t, y) = (-x', \dots, -x^{(n-1)}, f(t, y)), k = nm$, and consider the equivalent system of differential equations

$$(3.1) y' + F(t, y) = 0.$$

A point $y_0 \in \mathbb{R}^k$ is called an ω_0 -nonrecurrence point of (3.1) if every solution y(t) of (3.1) with $y(0) = y_0$ is such that $y(t) \neq y_0$, $0 < t \leq \omega_0$.

Lemma 1. Let $\Omega \subset \mathbb{R}^k$ be a nonempty bounded open region whose boundary $\partial \Omega$ consists of ω_0 -nonrecurrence points only, $\omega_0 \leq T$. Further, let $\deg(F(0,y),\Omega,0)$ be defined and nonzero. Then for every $\omega, 0 < \omega \leq \omega_0$, there exists a solution y(t) of (3.1) such that $y(0) = y(\omega)$.

PROOF. This follows from the results of Krasnosel'skii [3, pp. 79-83] and the observation that $\deg(F(0, y), \Omega, 0) \neq 0$ implies the nonvanishing of the rotation of the vector field considered by Krasnosel'skii.

In the sequence of lemmas to follow, we shall show that the hypotheses of Theorem 1 allow us to construct a region Ω and find a number ω_0 so that Lemma 1 may be applied to equation (3.1).

LEMMA 2. Let N>0 be given and let $B \subset R^m$ be a bounded open set such that $\bar{A} \subset B$. Then there exists $\omega_1>0$, $0<\omega_1 \leq T$, such that every solution x(t) of (1.1) with $x^{(i)}(0)=r_i$, $i=0,\dots,n-1,r_0\in \bar{A}$, $||r_i||\leq N$, $i=1,\dots,n-1$, has the property that $x(t)\in \bar{B}$, $||x^{(i)}(t)||\leq 2N$, $i=1,\dots,n-1$, $0\leq t\leq \omega_1$.

PROOF. This is an immediate consequence of the continuity of f and the basic initial value problem existence results.

For N and B as defined above we let

$$\Omega = \{(x, x', \dots, x^{(n-1)}) : x \in A, \|x^{(i)}\| < N, i = 1, \dots, n-1\},$$

$$(3.2)$$

$$\Sigma = \{(x, x', \dots, x^{(n-1)}) : x \in B, \|x^{(i)}\| < 2N, i = 1, \dots, n-1\},$$

and for every $K \subset \overline{\Omega}$ we let S(K) denote the set of all solutions y of (3.1) with $y(0) \in K$. Lemma 2 thus implies that if $y \in S(K)$ then $y(t) \in \overline{\Sigma}$ for $0 \le t \le \omega_1$.

LEMMA 3. For every $K \subset \overline{\Omega}$, S(K) has compact closure in $C([0, \omega_1], R^k)$.

PROOF. An application of the Ascoli-Arzela theorem.

LEMMA 4. There exists ω_0 , $0 < \omega_0 \le \omega_1$, such that $\partial \Omega$ consists only of ω_0 -nonrecurrence points of (3.1).

PROOF. Assume the contrary. Then there is a sequence $\{t_n\}_{n=1}^{\infty}$, $t_n \rightarrow 0$ as $n \rightarrow \infty$, and a sequence of points $y_n \in \partial \Omega$ such that (3.1) has a solution $y_n(t)$ with $y_n(0) = y_n = y_n(t_n)$. By Lemma 2, $y_n(t) \in \overline{\Sigma}$, $0 \le t \le \omega_1$. By passing to subsequences, if necessary, relabeling, and applying Lemma 3, we may assume that $\lim_{n \to \infty} y_n = y^* \in \partial \Omega$ and that $\lim_{n \to \infty} y_n(t) = y(t)$ is a solution of (3.1) with $y(0) = y^*$. Since $y_n(t) = y_n - \int_0^t F(s, y_n(s)) ds$ we conclude that

$$\frac{1}{t_n} \int_0^{t_n} F(s, y_n(s)) \, ds = 0.$$

By continuity of F we have

$$\lim_{n\to\infty}\frac{1}{t_n}\int_0^{t_n} ||F(s,y_n(s))-F(0,y^*)|| \ ds=0,$$

and therefore that $F(0, y^*) = 0$.

Let $y^* = (x, x', \dots, x^{(n-1)})$, then

$$F(0, y^*) = 0 = (-x', \cdots, -x^{(n-1)}, f(0, y^*)),$$

which implies that $f(0, x, 0, \dots, 0) = 0$ for some $x \in \partial A$, a contradiction.

PROOF OF THEOREM 1. We now apply Lemma 1 with ω_0 as chosen in Lemma 4 and Ω as given by (3.2). We only need to verify that $\deg(F(0, \gamma), \Omega, 0) \neq 0$.

Since

$$\deg(F(0, y), \Omega, 0) = \deg(-x', \dots, -x^{(n-1)}, f(0, x, x', \dots, x^{(n-1)}), \Omega, 0),$$

and since $f(0, x, 0, \dots, 0) \neq 0$ on ∂A , we conclude that $\deg(F(0, y), \Omega, 0)$ is defined. Further $(-x', -x'', \dots, -x^{(n-1)}, f(0, x, \lambda x', \dots, \lambda x^{(n-1)})) \neq 0$ on $\partial \Omega$, $0 \leq \lambda \leq 1$; hence F(0, y) is homotopic to $(-x', \dots, -x^{(n-1)}, f(0, x, 0, \dots, 0))$. By the homotopy invariance theorem of degree theory (see [2] or [6])

$$\deg(F(0, y), \Omega, 0) = \deg(-x', \cdots, -x^{(n-1)}, f(0, x, 0, \cdots, 0), \Omega, 0).$$

The latter, on the other hand, is nonzero, if and only if

$$deg(f(0, x, 0, \dots, 0), A, 0) \neq 0$$

(see [6]). This completes the proof.

REMARK. We note from the above lemmas and proofs that ω_0 depends on the arbitrarily chosen constant N and region B. Thus in varying both of these quantities one may possibly increase ω_0 and hence increase the range of possible periods for solutions of (1.1) satisfying the periodic boundary conditions (1.2). The interested reader is referred to the paper [1] where existence results for periodic solutions (of period T) of systems of second order equations are established using methods similar to the ones used in this paper.

REFERENCES

- 1. J. W. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations (to appear).
- 2. E. Heinz, An elementary analytic theory of the degree of mapping in n-dimensional space, J. Math. Mech. 8 (1959), 231-247. MR 21 #1370.
- 3. M. A. Krasnosel'skii, The operator of translation along trajectories of differential equations, "Nauka", Moscow, 1966; English transl., Transl. Math. Monographs, vol. 19, Amer. Math. Soc., Providence, R.I., 1968. MR 34 #3012; MR 36 #6688.
- 4. K. Schmitt, Periodic solutions of nonlinear second order differential equations, Math. Z. 98 (1967), 200-207. MR 35 #4511.
- 5. —, A note on periodic solutions of second order ordinary differential equations, SIAM J. Appl. Math. 21 (1971), 491-494.
 - 6. J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969.
- 7. G. Seifert, A note on periodic solutions of second order differential equations without damping, Proc. Amer. Math. Soc. 10 (1959), 396-398; errata, 1000. MR 21 #5784.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112