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PERIODIC SOLUTIONS OF SMALL PERIOD OF SYSTEMS
OF «TH  ORDER  DIFFERENTIAL EQUATIONS1

KLAUS SCHMITT

Abstract. This paper consists of a study of the existence of

periodic solutions of systems of nth order ordinary differential

equations using tools from degree theory.

1. Introduction. Let /denote the compact interval [0, T], R=(—00, co)

and let/:/x Rnm—>-Rm be continuous. We consider the differential system

(1.1) x{n) + /(r, x,x, • • • , x'"-1') = 0,

and give conditions which ensure that (1.1) has periodic solutions of small

period, i.e., conditions which ensure the existence of a constant co0,

0<w0^£, such that for every co, 0<w^coQ, (1.1) has a solution x(t)

such that

(1.2) xU)(0) = *«>(»),       / = 0, ■••>n_i.

The considerations in this paper are largely motivated by a paper of

Seifert [7] where degree-theoretic arguments are used to prove the

existence of periodic solutions (of small period) for the undamped os-

cillator

(1.3) x" + g(x) = p(t),

where g(x) is a general restoring force having the property that

(1.4) xg{x)>0,       X5¿0,       \g(x)\ — co   asW^co.

Using only simple results from ordinary differential equations and from

degree theory (we use the theory as developed in [2] and [6]) we establish

the following general principle.

Theorem 1. Let there exist a nonempty bounded open set A c Rm such

thatf(0, x, 0, • • • , 0)^0 for x e dA and let deg(/(0, x, 0, • • • , 0), A, 0)^
0. Then there exists co0, 0<co0^£, such that for every w, 0<co^co0, (1.1)

has a solution satisfying the periodic boundary conditions (1.2).
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Throughout the paper, we shall say that a differential equation has

periodic solutions of small periods whenever the conclusion of Theorem 1

holds for that equation. Furthermore, we assume throughout that all

solutions of the equation being considered exist on the basic interval

[0, T], and ||-|| shall denote the Euclidean norm in Rm. No ambiguity will

arise if we use the symbol 0 for the zero of all Euclidean spaces considered

in this paper.

2. Corollaries.

Corollary 1. Let f.IxRnm^~Rm be continuous and let there exist a

constant r>0 such that either

(i) x -f (0, x,Q, ■■■ ,0)>0, \\x\\=r, or
(ii) x -/(0, x, 0, ■ ■ ■ , 0)<0, ||jc|| =r.

Then (1.1) has periodic solutions of small periods.

Proof. Let A={x eRm:\\x\\<r}. Then either condition (i) or (ii)

above implies that deg(/(0, x, 0, • • • , 0), A, 0) is defined. Further,

either of the conditions implies that the vector field /(0, x, 0, • • •, 0),

x e dA, has the property that /(0, x, 0, • • • , 0) and /(0, — x, 0, • • • , 0)

do not have the same direction for every x e dA and hence that

/(0, x, 0, • • -, 0) is homotopic to an odd vector field. It follows from the

homotopy invariance theorem of degree theory (see [2] or [6]) and from

Borsuk's theorem (see [6]) that deg(/(0, x, 0, • • • , 0), A, 0)^0. We may,

therefore, apply Theorem 1.

Corollary 2.   Consider the differential equation

(2.1) x^ + h(t, x, x, ■ ■ ■ , x*"-1') + g(x) = p{t),

where h:IxRn^-R, g:R-+R, p:I—>R are continuous and have the property

that ft(0, x, 0, • • • , 0)=0, xg(x)>0 (<0) and \g(x)\^co as |x|-»co. Then

(2.1) has periodic solutions of small periods.

Proof. Since/»is continuous, xg(x)>0 (<0)and|g(;c)|-*co as \x\-^-co,

there will exist a constant r>0 such that either

(i) x(g(x)-p{0))>0, \x\ = r, or

(ii) x(g{x)-p(0))<0, \x\ = r.

We may, therefore, apply the previous corollary to complete the proof.

Remark. Taking ft=0, w=2, we obtain the result of Seifert [7]. Also,

if «=2 and h=k{x, x') we obtain the existence of periodic solutions of

small period for the forced Lienard equation x"+k(x, x')+g(x)=p(t).

Remark. In the case of equation (2.1), it will be apparent from the

proof of Theorem 1 that the constant co0 depends only on the left side of

the equation and a bound on \p(t)\, O^t^T. Thus if p(t) is a periodic

function (in the usual sense) of period to, œ^m0, then the corresponding
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periodic solution (whose existence is guaranteed by Theorem 1) may be

extended periodically so as to yield a periodic solution (in the usual sense)

of (2.1). A similar remark also holds for equation (1.1).

Corollary 3.    Consider the nth order scalar equation

(2.2) x<"> +f(t,x,x', - • • , x'"-1») = 0,

where fix Rn^*R is continuous, and let there exist constants a, ß, <x<.ß,

such that either

(i) f(t, a, 0, • • • , 0)^0^/(/, ß, 0, • • • , 0), or

(ii) /(/, a, 0, • • • , 0)£0£/(r, ß, 0, • • • , 0),
with strict inequalities holding in either case for /=0. Then (2.2) has periodic

solutions of small periods.

Proof.   In either case, deg(/(0, x, 0, • • •, 0), (a, ß), 0)5¿0.

Remark. Corollary 3 represents generalizations of some results in

[4] and [5]. Case (i) extends Theorem 1 of [5] in the sense that no local

Lipschitz condition is required and further that n need not equal 2. On the

other hand, we need to assume here that strict inequalities hold for r=0

in order for deg(/(0, x, 0, • ■ • , 0), (a, ß), 0) to be defined. Case (ii)

extends some special cases of results in [4] to higher order equations;

however, the results in [4] are valid for arbitrary periods whereas Corollary

3 only guarantees the existence of solutions of small periods.

3. Proof of Theorem 1. Before proceeding with the proof, we need

some terminology and some preliminary lemmas.

Let7=(x, x\ • • • , x^-»),F{t, y)=(-x', ■■■, -x(n-»,f(t,y)),k=nm,

and consider the equivalent system of differential equations

(3.1) y' + F(t,y) = 0.

A point y0£Rk is called an co0-nonrecurrence point of (3.1) if every

solutiony(t) of (3.1) withy(0)=y0 is such thaty(t)j£y0, 0<r^coo.

Lemma 1. Let Qcü* be a nonempty bounded open region whose

boundary dil consists of to0-nonrecurrence points only, co0^T. Further, let

dcg(F(0,y), Í2, 0) be defined and nonzero. Then for every a>, 0<cor^«0,

there exists a solution y(t) of(3A) such that y(0)=y(co).

Proof. This follows from the results of Krasnosel'skiï [3, pp. 79-83]

and the observation that deg(£(0, y), D, 0)#0 implies the nonvanishing

of the rotation of the vector field considered by Krasnosel'skiï.

In the sequence of lemmas to follow, we shall show that the hypotheses

of Theorem 1 allow us to construct a region Q. and find a number co0 so

that Lemma 1 may be applied to equation (3.1).
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Lemma 2. Let 7V>0 be given and let B<=.Rm be a bounded open set

such that Ä<^B. Then there exists a>1>0, 0<co1^T, such that every

solution x(t) of (1.1) with x{i)(0)=rit z'=0, • • • , n—l,r0eÄ, ||r¿||<JV,

2=1, ■ ■ • ,n—\, has the property that x(t)eB, ||x(i)(r)||=2/V, ; = 1, • • • ,

«-LO^i^coj.

Proof.   This is an immediate consequence of the continuity of/and

the basic initial value problem existence results.

For TV and B as defined above we let

Q = {(x, x, ■ ■ ■ , x<n-»):x e A, \\x^\\ < N, i= 1, •••,«- 1},

(3.2)

2 = {(x,x',--- ^^-^-.xgB, \\x{i)\\ <2N, /= 1, •••,«- 1},

and for every K^Ü. we let S(K) denote the set of all solutions y of (3.1)

with y(0) e K. Lemma 2 thus implies that if y e S(K) then y(t) e S for

Lemma 3.    For every K<^ Ù, S(K) has compact closure in C([0, coj, Rk).

Proof.   An application of the Ascoli-Arzela theorem.

Lemma 4. There exists œ0, 0<<wo^w1, such that 9Q consists only of

w0-nonrecurrencepoints of(3.\).

Proof. Assume the contrary. Then there is a sequence {fn}™=i, tn—*0

as »-»-co, and a sequence of points yn e 3£i such that (3.1) has a solution

yn(t) mthyn(0)=yn=yn(tn). By Lemma 2, yn{t) e I, 0<i=Wl. Bypassing

to subsequences, if necessary, relabeling, and applying Lemma 3, we may

assume that lim„_œ yn=y* £ SD, and that lim,,,^ yn(t)=y(t) is a solution

of (3.1) with y(0)—y*. Since y„(t)=yn— P0 F(s,yn(s))ds we conclude

that

- f'V(s, yn(s)) ds = 0.
tnJo

By continuity of F we have

lim i P"||£(s, yn(s)) - F(0, y*)\\ ds = 0,
n-+oo tn Jo

and therefore that £(0, y*) = 0.

Let7* = (x, x', ■ ■ ■ , x1"-»), then

£(0,7*) = 0 = (-*', ■■■ , -xi*-u,f(p,y*y),

which implies that/(0, x, 0, • • • , 0)=0 for some x e dA, a contradiction.
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Proof of Theorem 1. We now apply Lemma 1 with co0 as chosen in

Lemma 4 and Q as given by (3.2). We only need to verify that

deg(£(0,j),û,0)9é0.
Since

deg(£(0,j),Q,0)

= deg(-x\ • ■ • , -*<*-»,/((>, x, x', ■ ■■, x'"-1'), Q, 0),

and since/(0, x, 0, • • • , 0)?£0 on dA, we conclude that deg(£(0,j), Q, 0)

is defined. Further (-x\ -x", • • •, -x«"-1»,/^, x, Àx', ■■■, Ax«"-1'))^

on 3D, OíáA^l; hence F(0,y) is homotopic to (—x', • • • , —x(n_1),

/(0, x, 0, • • • , 0)). By the homotopy invariance theorem of degree theory

(see [2] or [6])

deg(£(0, y), Q, 0) = deg(-x', • • ■ , -x<-»,/(0, x, 0, • • • , 0), Q, 0).

The latter, on the other hand, is nonzero, if and only if

deg(/(0, x, 0, • • •, 0), A, 0) # 0

(see [6]). This completes the proof.

Remark. We note from the above lemmas and proofs that <w0 depends

on the arbitrarily chosen constant N and region B. Thus in varying both

of these quantities one may possibly increase a>0 and hence increase the

range of possible periods for solutions of (1.1) satisfying the periodic

boundary conditions (1.2). The interested reader is referred to the paper

[1] where existence results for periodic solutions (of period T) of systems

of second order equations are established using methods similar to the

ones used in this paper.
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