$\Lambda(p)$ SETS AND SIDON SETS

SAMUEL E. EBENSTEIN

In this note we present a short proof of the following theorem due to Robert E. Edwards, Edwin Hewitt and Kenneth A. Ross [3]:

THEOREM. If Γ is an infinite (discrete) abelian group there exists $E \subset \Gamma$ so that E is $\Lambda(p)$ for all $p < \infty$, but E is not Sidon.

Our proof is based on a theorem of Aline Bonami [1, Theorem 5, p. 359]. We refer to [4, §37] for the definition of the terms $\Lambda(p)$ set and Sidon set.

LEMMA 1. If $\Gamma_0 \subset \Gamma$ is a subgroup and $E \subset \Gamma_0$, then E is $\Lambda(p)$ [Sidon] in Γ_0 if and only if E is $\Lambda(p)$ [Sidon] in Γ .

PROOF. Clear.

LEMMA 2. If Γ is an infinite abelian group then Γ contains a subgroup Γ_0 isomorphic with one of the following:

(i) Z;

(ii) $Z(q^{\infty})$ for some prime q;

(iii) $\sum_{n=1}^{\infty} Z(q_n)$ where q_n is an increasing sequence of primes;

(iv) $\sum_{n=1}^{\infty} Z(q)$ for some prime q.

PROOF. See [3, Theorem 2.3].

The following lemma is a special case of [2, Lemma 1, p. 590].

LEMMA 3. If E is Sidon in Γ and $W \subset \Gamma$ is infinite then $W + W \not\subset E$.

DEFINITION. If E is a countable subset of Γ let $\gamma_1, \gamma_2, \gamma_3, \cdots$ be an enumeration of the elements of E. For $\gamma \in \Gamma$ and s a positive integer, let $R_s(E, \gamma)$ be the number of representations of γ of the form

 $\gamma = \pm \gamma_{n_1} \pm \gamma_{n_2} \pm \cdots \pm \gamma_{n_s} \qquad (n_1 < n_2 < \cdots < n_s).$

The following theorem is a special case of [1, Theorem 5, p. 359].

THEOREM 4. If $E \subset \Gamma$ and $R_s(E, 0) \leq B^s$ for some $B \geq 0$ and all s, then E+E is $\Lambda(p)$ for all $p < \infty$.

© American Mathematical Society 1973

Received by the editors March 24, 1972 and, in revised form, May 12, 1972. *AMS* (*MOS*) subject classifications (1969). Primary 4250. *Key words and phrases*. $\Lambda(p)$ set, Sidon set.

PROOF OF THEOREM. By Lemma 3 and Theorem 4 it is sufficient to find an infinite set E so that $R_s(E, 0)=0$, and let F=E+E.

If Γ contains an infinite independent set E, then clearly $R_s(E, 0)=0$. If Γ contains no infinite independent set then either $Z \subset \Gamma$, or $Z(q^{\infty}) \subset \Gamma$ for some prime q. If $Z \subset \Gamma$ let $E = \{3^n\}_{n=1}^{\infty}$. Then the lacunarity of E implies that $R_s(E, 0)=0$. If $Z(q^{\infty}) \subset \Gamma$ let $E = \{\exp(2\pi i/q^n)\}_{n=1}^{\infty}$. (Here we are considering $Z(q^{\infty})$ as a subgroup of T.) Then a simple computation shows that $R_s(E, 0)=0$.

BIBLIOGRAPHY

1. Aline Bonami, Étude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 2, 335-402.

2. Myriam Déchamps-Gondim, Compacts associés à un ensemble de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A590-A592. MR 42 #6526.

3. Robert E. Edwards, Edwin Hewitt and Kenneth A. Ross, Lacunarity for compact groups. I, Indiana Univ. Math. J. 21 (1972), 787-806.

4. Edwin Hewitt and Kenneth A. Ross, *Abstract harmonic analysis*. Vol. II: *Structure and analysis for compact groups analysis on locally compact Abelian groups*, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970. MR 41 #7378.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202

620