THE p-CLASSES OF A HILBERT MODULE

JAMES F. SMITH

ABSTRACT. Let H be a right Hilbert module over a proper H^* -algebra A. For $0 , an extended-real value <math>||f||_p$ is associated with each $f \in H$, and the p-class H_p is defined to be $\{f \in H : ||f||_p < \infty\}$. For $1 \le p \le \infty$, $(H_p, ||\cdot||_p)$ is a right normed A-module. If $1 \le p \le 2$, there is a conjugate-linear isometry of $(H_p, ||\cdot||_p)$ onto the dual of $(H_q, ||\cdot||_q)$, where (1/p) + (1/q) = 1; hence H_p is complete in its norm.

1. Introduction. Let A be a proper H^* -algebra with inner product and norm denoted by $\langle \cdot, \cdot \rangle$ and $|\cdot|$, respectively. By a projection in A we mean a nonzero selfadjoint idempotent, and by a projection base for A we mean a maximal family of mutually orthogonal projections. The trace class of A, denoted by τA , is the set $\{xy: x, y \in A\}$. It is shown in [6] that a trace functional tr is unambiguously defined on τA by letting tr $xy = \langle x, y^* \rangle =$ $\sum \langle xyp_{\omega}, p_{\omega} \rangle$, where $\{p_{\omega} : \omega \in \Omega\}$ is any projection base for A. It is further shown that for each nonzero $a \in A$ there exists a unique positive element $[a] \in A$ (that is, one possessing the property $\langle [a]x, x \rangle \ge 0$ for every $x \in A$) such that $[a]^2 = a^*a$; moreover, $a \in \tau A$ if and only if $[a] \in \tau A$. A norm τ is defined on τA by letting $\tau(a) = \text{tr}[a]$; then $(\tau A, \tau)$ is a Banach *-algebra ([6], [5]). In [7] the present author has shown that each nonzero positive element b of A has a unique spectral representation $b = \sum \lambda_n e_n$, where the λ_i are positive numbers with $\lambda_i < \lambda_i$ if i > j, and the e_i are mutually orthogonal projections. In particular, for any nonzero $a \in A$, if $\sum \lambda_n e_n$ is the spectral representation of [a], we define $|a|_p$, for $0 , by <math>|a|_p^p =$ $\sum \lambda_n^p |e_n|^2$. We also define $|a|_{\infty}$ to be λ_1 , and $|0|_p = 0$ for 0 . Thep-class A_n , $0 , is then defined as <math>\{a \in A : |a|_p < \infty\}$. Among the results of [7] are the following: (1) $|a|_{\infty} = ||L_a||$, where L_a denotes, as usual, the left multiplication operator; (2) $A_p \subset A_{p'}$, if 0 , theinclusion being proper if A is infinite-dimensional; and $A_p = A$ if $p \ge 2$; (3) $(A_2, |\cdot|_2) = (A, |\cdot|)$ and $(A_1, |\cdot|_1) = (\tau A, \tau)$; (4) $(A_n, |\cdot|_n)$ is a normed *-algebra for $1 \le p \le \infty$, and is complete for $1 \le p \le 2$.

A (right) Hilbert A-module H, introduced by Saworotnow in [4], is a complex linear space which is a right module over the proper H^* -algebra

Presented to the Society, March 27, 1972; received by the editors February 3, 1972. AMS (MOS) subject classifications (1970). Primary 46H25; Secondary 46K15, 46C10.

Key words and phrases. Hilbert module, H^* -algebra, trace class, p-classes, normed module.

[©] American Mathematical Society 1973

A, and on which there is defined a vector inner product (\cdot, \cdot) mapping $H \times H$ into τA , such that for elements of H: (1) (f+g,h)=(f,h)+(g,h); (2) $(f,g)=(g,f)^*$; (3) (f,ga)=(f,g)a, where $a \in A$; (4) $(f,\alpha g)=\alpha(f,g)$ for any complex number α ; (5) if $f\neq 0$ then $(f,f)=a^2$ for some (unique) positive element $a\neq 0$ in A; we denote this a by [f]; (6) H is complete in the norm $\|\cdot\|$ derived from the inner product $[\cdot,\cdot]$ defined by $[f,g]=\operatorname{tr}(g,f)$. Basic properties of Hilbert A-modules are obtained in [4], among them the fact that $\|fa\| \leq \|f\| \|a\|$ for $f \in H$, $a \in A$; hence a Hilbert A-module is evidently a particular instance of a Banach module (see [2, p. 263]). (We shall assume without loss of generality that H is a faithful module, since its right annihilator R is a closed two-sided ideal of A; hence H is always a faithful Hilbert R^{\perp} -module.) Giellis [1] has defined the trace class of H to be $\tau H = \{fa: f \in H, a \in A\}$ and has defined a norm π on τH by $\pi(f) = \tau([f])$. He has shown that $(\tau H, \pi)$ is a Banach module and has presented results on duality relationships.

Our present aim is to generalize the results of [1] for Hilbert modules, much as those of [5] and [6] were generalized for H^* -algebras in [7]. For $f \in H$, and for $0 , we define <math>||f||_p = |[f]|_p$, and we let $H_p = \{f \in H: ||f||_p < \infty\}$ (that is, $f \in H_p$ if and only if $[f] \in A_p$). Our results are the following.

THEOREM 1. For $0 and any <math>f \in H$, $||f||_{p'} \le ||f||_{p}$; hence $H_{p} \subset H_{p'}$, and $H_{p} = H$ if $p \ge 2$. For $1 \le p \le \infty$, $(H_{p}, ||\cdot||_{p})$ is a right normed Amodule. $(H_{2}, ||\cdot||_{2}) = (H, ||\cdot||)$, and $(H_{1}, ||\cdot||_{1}) = (\tau H, \pi)$.

THEOREM 2. For $1 \le p \le 2$, let q be such that (1/p) + (1/q) = 1. Then there exists a conjugate-linear isometry of $(H_p, \|\cdot\|_p)$ onto the dual of $(H_q, \|\cdot\|_q)$; hence H_p is complete in its norm.

We conclude with a necessary and sufficient condition for the inclusion $H_p \subset H_{p'}$ to be proper $(1 \le p < p' \le 2)$.

2. **Preliminary results.** We recall first of all from [4, Lemma 1] that $(fa,g)=a^*(f,g)$ for any $f,g\in H$ and $a\in A$. From the fact that $\tau(f,g)\leq \|f\|\|g\|$ [4, Theorem 2], it is easily established that (\cdot,\cdot) is τ -continuous on $H\times H$ and therefore $|\cdot|$ -continuous as well, since τ dominates $|\cdot|$ [6, Corollary 3]. We observe that $[f,ga]=\operatorname{tr}(ga,f)=\operatorname{tr}a^*(g,f)=\langle (g,f),a\rangle;$ similarly, $[fa,g]=\langle a,(f,g)\rangle$. Also, $[f,ga]=\operatorname{tr}(g,f)a^*=\operatorname{tr}(g,fa^*)=[fa^*,g]$.

As in [1], we define the following sets of bounded linear transformations:

$$R(A) = \{T: A \to A \mid T(ab) = (Ta)b \text{ for all } a, b \in A\},$$

$$R(AH) = \{T: A \to H \mid T(ab) = (Ta)b \text{ for all } a, b \in A\},$$

$$R(HA) = \{T: H \to A \mid T(fa) = (Tf)a \text{ for all } f \in H, a \in A\}.$$

Still following [1], we define $L_f \in R(HA)$ for each $f \in H$ by $L_f g = (f, g)$. (Note that, by standard notation, $L_{[f]}$ is the operator effecting left multiplication by [f] in A; clearly, $L_{[f]} \in R(A)$.) For $f \in H$, we shall define $T_f \in R(AH)$ by $T_f a = fa$. By a remark of Giellis [1, p. 65], we have $T_f^* T_f = L_{[f]}^2 = L_{[f]^2}$. The relationship $T_f = L_f^*$ also holds, since for any $f, g \in H$ and $a \in A$, $[g, T_f a] = [g, fa] = \langle (f, g), a \rangle = \langle L_f g, a \rangle = [g, L_f^* a]$.

LEMMA 1. For any $f \in H$ and $a \in A$, ||fa|| = |[f]a|.

PROOF. $||fa||^2 = [T_f a, T_f a] = \langle a, T_f^* T_f a \rangle = \langle a, [f]^2 a \rangle = \langle [f] a, [f] a \rangle = |[f] a|^2$.

COROLLARY 1.
$$||f||_{\infty} = |[f]|_{\infty} = ||L_{f}|| = ||T_{f}|| = ||L_{f}||$$
.

For any $f \neq 0$ in H, let $\sum \lambda_n e_n$ be the spectral representation of [f] [7, Theorem 2.5]. We shall denote the countable (possibly finite) set $\{e_n\}$ by $E_{[f]}$ and refer to it as the spectral family of [f]. Any projection base $\{e_\omega : \omega \in \Omega\}$ containing every $e_n \in E_{[f]}$ will be called a projection base associated with [f]. In [1, Lemma 1] it is shown that if $\sum \lambda_n e_n$ is the spectral representation of [f], then the operator $W_f \in R(AH)$ defined for any $x \in A$ by $W_f x = \sum \lambda_n^{-1} f e_n x$ is a partial isometry with $f = W_f[f]$ and $[f] = W_f^* f$. We shall refer to W_f as the partial isometry associated with f.

The proofs of our next two lemmas make use of the fact that for any $S \in R(A)$ and $1 \le p \le \infty$ we have $|Sa|_p \le ||S|| ||a|_p$, where ||S|| denotes the norm of S as an operator on $(A, |\cdot|)$ [7, Proposition 3.19]. Lemma 2 gives a similar result for $T \in R(HA)$.

LEMMA 2. If $T \in R(HA)$, then $|Tf|_p \leq ||T|| ||f||_p (1 \leq p \leq \infty)$.

$$\text{PROOF.} \quad |T\!f|_p \! = \! |TW_f[f]|_p \! \leq \! \|TW_f\| \; |[f]|_p \! \leq \! \|T\| \; \|W_f\| \; \|f\|_p \! \leq \! \|T\| \; \|f\|_p.$$

LEMMA 3. If $a \in A$ and $T \in R(HA)$, then there exists $g \in H$ such that $L_aT = L_g$; moreover, $\|g\|_p \le \|T\| \|a\|_p (1 \le p \le \infty)$, where $\|T\|$ is the norm of T as a transformation from $(H, \|\cdot\|)$ to $(A, |\cdot|)$.

PROOF. The first part of the lemma is Lemma 7 of [1]. We shall show that $||g||_p \le ||T|| ||a||_p$, noting that this result is obvious for $p = \infty$, in view of Corollary 1. Assume now that $1 \le p < \infty$ and that $\sum \lambda_n e_n$ is the spectral representation of $[g] \ne 0$. As shown above, we have $T_g = L_g^* = T^*L_g^* = T^*L_g^*$, so that $T_g[g] = g[g] = T^*a^*[g]$, and therefore

$$W_g^* T^* a^*[g] = W_g^* g[g] = [g]^2 = \sum_n \lambda_n^2 e_n.$$

It follows that $W_g^*T^*a^*[g]e_n = \lambda_n^2 e_n = \lambda_n W_g^*T^*a^*e_n$, and we conclude that $W_g^*T^*a^*e_n = \lambda_n e_n = e_n(W_g^*T^*a^*)^*$. Now for any $b \in A$, let $P_k b = \sum_{n=1}^k e_n b$.

 P_k is the orthogonal projection onto the right ideal $\sum_{n=1}^k e_n A$ in A, and $P_k \in R(A)$. We have

$$P_k(W_g^*T^*a^*)^* = \sum_{n=1}^k e_n(W_g^*T^*a^*)^* = \sum_{n=1}^k \lambda_n e_n.$$

Thus, for each k,

$$\sum_{n=1}^{k} \lambda_{n}^{p} |e_{n}|^{2} = |P_{k}(W_{g}^{*}T^{*}a^{*})^{*}|_{p}^{p} \leq ||P_{k}||^{p} |W_{g}^{*}T^{*}a^{*}|_{p}^{p}$$

$$\leq ||W_{g}^{*}T^{*}||^{p} |a^{*}|_{p}^{p} \leq ||W_{g}^{*}||^{p} ||T^{*}||^{p} |a|_{p}^{p} \leq ||T||^{p} |a|_{p}^{p}.$$

(We have used the fact that $|a|_p = |a^*|_p$ [7, Corollary 3.16].) Therefore, $|[g]|_p^p \le ||T||^p |a|_p^p$, or $||g||_p \le ||T|| |a|_p$.

3. **Proof of Theorem 1.** The first statement of the theorem is evident from the corresponding statements about A_p [7, Corollary 3.12]. To show that H_p $(1 \le p \le \infty)$ is a linear space we verify that $\|\cdot\|_p$ is a linear space norm, a fact which is obvious for $p = \infty$, by Corollary 1. To establish subadditivity for $1 \le p < \infty$, let f and g be any elements of H_p , and let W be the partial isometry associated with f+g. We then have

$$||f + g||_{p} = |W^{*}(f + g)|_{p} = |W^{*}f + W^{*}g|_{p}$$

$$= |W^{*}W_{f}[f] + W^{*}W_{g}[g]|_{p} \leq |W^{*}W_{f}[f]|_{p} + |W^{*}W_{g}[g]|_{p}$$

$$\leq ||W^{*}W_{f}||_{p} ||f||_{p} + ||W^{*}W_{g}||_{p} ||g||_{p} \leq ||f||_{p} + ||g||_{p}.$$

We have again used Proposition 3.19 of [7], as well as the triangle inequality for $|\cdot|_p$ [7, Proposition 3.23]. The remaining properties of a linear space norm are readily verified. Now for any $f \in H$, $a \in A$, let W be the partial isometry associated with fa. We have $||fa||_p = ||fa||_p = ||W^*fa||_p \le ||W^*f||_p ||a||_{\infty}$ by [7, Corollary 3.20]. Since $|a|_{\infty} \le |a|$ [7, Lemma 3.9],

$$|W^*f|_p |a|_\infty \le ||W^*|| ||f||_p |a| \le ||f||_p |a|.$$

Thus H_p is a right normed A-module. The final statement of the theorem follows from corresponding results in A [7, Remark 3.5], along with [1, Lemma 2]: for any $f \in H$,

$$||f||_2^2 = |[f]|_2^2 = |[f]|^2 = \operatorname{tr}[f]^2 = \operatorname{tr}[f, f] = ||f||_2^2$$

and

$$||f||_1 = |[f]|_1 = \tau([f]) = \pi(f).$$

We remark that the completeness of $(H_p, \|\cdot\|_p)$ for $1 \le p < 2$ can be established by the method of [3, p. 265] as adapted in [1]; however we omit this proof since it is rendered unnecessary by Theorem 2.

4. **Proof of Theorem 2.** The case p=1 is Theorem 2 of [1]. For $1 we observe that <math>2 \le q < \infty$. For any $g \in H_q$ (=H) and any $f \in H_p$, let $\phi_f(g) = [g, f] = \operatorname{tr}(f, g)$. Clearly, ϕ_f is a linear functional on H_q and the mapping $f \to \phi_f$ is conjugate-linear. We shall show first that ϕ_f is bounded and that $\|\phi_f\| \le \|f\|_p$. If $E = \{e_\omega : \omega \in \Omega\}$ is any projection base for A, we have

$$\begin{split} |\phi_f(g)| &= |\mathrm{tr}(f,\,g)| = |\mathrm{tr}(g,f)| = \left| \sum \langle (g,f)e_\omega,\,e_\omega \rangle \right| \leq \sum |\langle (g,fe_\omega),\,e_\omega \rangle| \\ &= \sum |[fe_\omega,\,ge_\omega]| \leq \sum \|fe_\omega\| \, \|ge_\omega\| = \sum |[f]e_\omega| \, |[g]e_\omega|, \end{split}$$

by Lemma 1. If E is now taken to be a projection base associated with [f], we conclude as in the proof of [7, Lemma 3.25] that this last sum does not exceed $|[f]|_p |[g]|_g = ||f||_p ||g||_g$.

To show that $||f||_p \le ||\phi_f||$, we consider the linear functional $\theta_{[f]}$ defined on A_q by $\theta_{[f]}(a) = \text{tr } a[f]$. From [7, Proposition 3.26], we have $||\theta_{[f]}|| = ||f||_p = ||f||_p$; hence it suffices to show that $||\theta_{[f]}|| \le ||\phi_f||$. Let a be any element of A_q . Then

$$|\theta_{[f]}(a)| = |\operatorname{tr} a[f]| = |\operatorname{tr} aW_f^*f| = |\operatorname{tr} L_g f|$$

= $|\operatorname{tr}(g, f)| = |\operatorname{tr}(f, g)| = |\phi_f(g)|,$

where, by Lemma 3, $g \in H$ is such that $L_a W_f^* = L_g$, with $||g||_q \le |a|_q$. Using this last inequality we conclude that $||\theta_{[f]}|| \le ||\phi_f||$.

We must show, finally, that the mapping $f o \phi_f$ is *onto* the dual of H_q . Let ϕ be any bounded linear functional on H_q . For each $g \in H_q$ (=H), $|\phi(g)| \le ||\phi|| \, ||g||_q \le ||\phi|| \, ||g||_q$, since $q \ge 2$. Thus ϕ is bounded on $(H, ||\cdot||)$ and there exists $f \in H$ such that $\phi(g) = [g, f]$. We need only show that $f \in H_p$. Let $\sum \lambda_n e_n$ be the spectral representation of [f], and let

$$v_k = \sum_{n=1}^k \lambda_n^{p-1} e_n \in A_q;$$

then

$$|v_k|_q = \left(\sum_{n=1}^k \lambda_n^{pq-q} |e_n|^2\right)^{1/q} = \left(\sum_{n=1}^k \lambda_n^p |e_n|^2\right)^{1/q}.$$

Using Lemma 3, we take $g_k \in H$ such that $L_{g_k} = L_{v_k} W_f^*$, where $||g_k||_q \le |v_k|_q$. Then for each k,

$$\begin{split} \sum_{n=1}^{k} \lambda_{n}^{p} |e_{n}|^{2} &= \left| \operatorname{tr} \sum_{n=1}^{k} \lambda_{n}^{p} e_{n} \right| = \left| \operatorname{tr} \left(\sum_{n=1}^{k} \lambda_{n}^{p-1} e_{n} \right) [f] \right| = \left| \operatorname{tr} v_{k} [f] \right| \\ &= \left| \operatorname{tr} v_{k} W_{f}^{*} f \right| = \left| \operatorname{tr} (g_{k}, f) \right| = \left| [g_{k}, f] \right| = \left| \phi(g_{k}) \right| \\ &\leq \|\phi\| \|g_{k}\|_{q} \leq \|\phi\| \|v_{k}\|_{q} = \|\phi\| \left(\sum_{n=1}^{k} \lambda_{n}^{p} |e_{n}|^{2} \right)^{1/q}. \end{split}$$

Thus $(\sum_{n=1}^k \lambda_n^p |e_n|^2)^{1/p} \le ||\phi||$ for each k, and consequently $||f||_p \le ||\phi|| < \infty$.

5. Conditions for distinctness of the p-classes. Suppose $1 \le p < p' \le 2$. In the H^* -algebra A, for A_p to be a proper subset of $A_{p'}$ it is necessary and sufficient that A be infinite-dimensional [7, Proposition 3.14]. We shall give a condition for the corresponding relationship to hold in the case of H_p and $H_{p'}$.

An element of H will be called primitive if it is of the form $fe \neq 0$, where e is a primitive projection in A; if ||fe|| = |e|, fe will be called a normal primitive element. (Note that the primitive projection e is uniquely determined for fe, since if fe = gp, where p is a primitive projection in A, then $e(f, f)e = p(g, g)p = \alpha e = \beta p \neq 0$; hence e = p.) A pair of primitive elements f_1e_1 and f_2e_2 will be called doubly orthogonal if $(f_1e_1, f_2e_2) = 0$ and $(e_1, e_2) = 0$.

PROPOSITION 1. For $1 \le p < p' \le 2$, H_p is a proper subset of $H_{p'}$ if and only if H contains an infinite set of pairwise doubly orthogonal primitive elements.

PROOF. We note first that there exist nonempty sets of pairwise doubly orthogonal primitive elements in H, since for any $f \in H$ there is a primitive projection e such that $fe \neq 0$ (Lemma 1). Now suppose that every maximal set of such elements is finite, and let $\{f_1e_1, \dots, f_ke_k\}$ be a maximal set. We may assume that the $f_n e_n$ are normal. We have $[f_n e_n]^2 =$ $(f_n e_n, f_n e_n) = e_n [f_n e_n]^2 e_n = \alpha_n^2 e_n$ for positive α_n , since $[f_n e_n]^2$ is a positive element of A. Hence $[f_n e_n] = \alpha_n e_n$, and from $\alpha_n |e_n| = |[f_n e_n]| = ||f_n e_n|| = |e_n|$ we conclude that $\alpha_n = 1$. Thus for any $a \in H$, $||f_n e_n a|| = |[f_n e_n] e_n a| = |e_n a|$, and hence $f_n e_n A$ is a closed submodule of A isomorphic to the closed right ideal $e_n A$. Let $M = \sum_{n=1}^k f_n e_n A$. Then $H = M \oplus M^p$, where $M^p = \{ f \in H : A \in M \}$ (f,g)=0 for all $g \in M$ [4, corollary to Lemma 3]. Clearly, every element of M belongs to the trace class τH . We shall show that the same is true for elements of M^p . Let $\{e_{\omega} : \omega \in \Omega\}$ be a projection base for A containing $\{e_1, \dots, e_k\}$. For any $f \in M^p$ and any $e_{\alpha} \neq e_n$ $(n=1, \dots, k)$, $fe_{\alpha} = 0$ or else fe_{α} would be a primitive element doubly orthogonal to each $f_{n}e_{n}$ $(n=1,\dots,k)$, contradicting maximality. Thus $[f]e_x=0$, by Lemma 1, and we have $[f] = \sum_{n=1}^{\infty} [f] e_n$; hence $[f] \in \tau A$ and $f \in \tau H$. Since H is identical with its trace class, $H_p = H$ for $1 \le p \le 2$.

Suppose, to the contrary, that H contains an infinite set $\{f_ne_n:n\in N\}$ of pairwise doubly orthogonal (normal) primitive elements. For $1\leq p< p'\leq 2$, choose r with p< r< p', and consider the series $\sum n^{-1/r}|e_n|^{-2/p'}f_ne_n$. The terms of this series are mutually orthogonal in $(H, \|\cdot\|)$; and, recalling from above that $[f_ne_n]=e_n$, we easily show that the squares of their norms have a finite sum. Thus there exists $f\in H$ such that $f=\sum n^{-1/r}|e_n|^{-2/p'}f_ne_n$.

Now by the continuity of (\cdot, \cdot) on $H \times H$, we have $[f]^2 = (f, f) = \sum n^{-2/r} |e_n|^{-4/p'} (f_n e_n, f_n e_n) = \sum n^{-2/r} |e_n|^{-4/p'} e_n$; and therefore $[f] = \sum n^{-1/r} |e_n|^{-2/p'} e_n$. It is now a simple matter to show, just as in [7, Proposition 3.14], that $f \in H_p$, but $f \notin H_p$.

We close by remarking that for the condition of Proposition 1 to hold, A must necessarily be infinite-dimensional, as is evident. This is not sufficient, however, as is shown by the Hilbert A-module eA, where e is a primitive projection and A is topologically simple (the latter condition assuring that the module is faithful). However, by means of Theorem 6 of [4], along with the accompanying examples, it is readily possible to provide instances of Hilbert A-modules possessing the property of Proposition 1.

REFERENCES

- 1. G. R. Giellis, Trace-class for a Hilbert module, Proc. Amer. Math. Soc. 29 (1971), 63-68. MR 43 #2523.
- 2. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378.
 - 3. C. A. McCarthy, c_p, Israel J. Math. 5 (1967), 249-271. MR 37 #735.
- **4.** P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. **35** (1968), 191–197. MR **37** #3333.
- 5. _____, Trace-class and centralizers of an H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2305.
- 6. P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304.
 - 7. J. F. Smith, The p-classes of an H*-algebra, Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, LE MOYNE COLLEGE, SYRACUSE, NEW YORK 13214