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THE p-CLASSES OF A HILBERT MODULE
JAMES F. SMITH

ABSTRACT. Let H be a right Hilbert module over a proper
H*-algebra A. For 0<p=oo, an extended-real value [f], is
associated with each f€ H, and the p-class H, is defined to be
{fe H:|fll,<oo}. For 1=Sp=c0, (H,, |ll,) is a right normed
A-module. If 1=p=2, there is a conjugate-linear isometry of
(Hy, |I*|i.») onto the dual of (H,, ||-|},), where (1/p)+(1/g)=1; hence
H, is complete in its norm.

1. Introduction. Let 4 be a proper H*-algebra with inner product and
norm denoted by (-, -) and ||, respectively. By a projection in 4 we mean
a nonzero selfadjoint idempotent, and by a projection base for 4 we mean
a maximal family of mutually orthogonal projections. The trace class of A,
denoted by 74, is the set {xy:x, y € A}. It is shown in [6] that a trace func-
tional tr is unambiguously defined on 74 by letting tr xy=(x, y*)=
> {XYPu> P> Where {p,:w € Q} is any projection base for A. It is further
shown that for each nonzero a € A4 there exists a unique positive element
[a] € A (that is, one possessing the property ([a]x, x)=0 for every x € A)
such that [@]>=a*a; moreover, a € 74 if and only if [a] € 74. A norm 7
isdefined on 74 by letting v(a)=tr[a]; then (+4,7) is a Banach
*-algebra ([6], [5]). In [7] the present author has shown that each nonzero
positive element b of A has a unique spectral representation b= 1,e,,
where the 4, are positive numbers with 4;<4;if i>j, and the ¢, are mutually
orthogonal projections. In particular, for any nonzero a € 4, if > ,¢, is
the spectral representation of [a], we define [a],, for 0< p< 0, by [a];=
> Anle,|®. We also define |a|,, to be 4,, and |0],=0 for 0<p=oo. The
p-class 4,, 0<p=oco, is then defined as {a € 4:|a|,<o0}. Among the
results of [7] are the following: (1) |a|,=|L,|, where L, denotes, as
usual, the left multiplication operator; (2) 4,<A4,, if 0<p<p'=2, the
inclusion being proper if A is infinite-dimensional; and 4,=4 if p=2; (3)
(Ao [lD=(4, ') and (4;, ['l)=(4,7); (4) (4,,[1,) is a normed
*-algebra for 1 = p= o0, and is complete for | S p=2.

A (right) Hilbert A-module H, introduced by Saworotnow in [4], is a
complex linear space which is a right module over the proper H*-algebra
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A, and on which there is defined a vector inner product (-, ) mapping
H x H into 74, such that for elements of H: (1) (f+g, h)=(f, h)+(g, h);
2 (f,8)=(g.N*; 3) (f,ga)=(f, g)a, where a € 4; (4) (f, ag)=a(f, g)
for any complex number «; (5) if /30 then (f, f)=a? for some (unique)
positive element a5£0 in A; we denote this a by [f]; (6) H is complete in the
norm |-|| derived from the inner product [-, -] defined by [f, g]l=tr(g, ).
Basic properties of Hilbert 4-modules are obtained in [4], among them the
fact that | fa| ||/l la| for f€ H, a € A; hence a Hilbert A-module is evi-
dently a particular instance of a Banach module (see [2, p. 263]). (We shall
assume without loss of generality that H is a faithful module, since its
right annihilator R is a closed two-sided ideal of 4; hence H is always a
faithful Hilbert R-+-module.) Giellis [1] has defined the trace class of H to
be TH={fa:f€ H, a€ A} and has defined a norm = on 7H by n(f)=
7([f]). He has shown that (vH, =) is a Banach module and has presented
results on duality relationships.

Our present aim is to generalize the results of [1] for Hilbert modules,
much as those of [5] and [6] were generalized for H*-algebras in [7]. For
feH, and for 0<p=oo, we define |f[,=I[f]l,, and we let H,=
{feH:||fll,<oo} (that is, fe H, if and only if [f]€ A,). Our results are
the following.

THEOREM 1. ForO<p<p'Sccandanyfe H, | f|,=|f|,; hence H,<
H,, and H,=H if p22. For 1Sp=c0, (H,, |‘|,) is a right normed A-
module. (H,, |l,)=(H, II'l), and (Hy, |I-ll)=(7H, m).

THEOREM 2. For 1 Zp=2, let q be such that (1/p)+(1/q)=1. Then there
exists a conjugate-linear isometry of (H,, |||l,) onto the dual of (H,, |'|l,);
hence H, is complete in its norm.

We conclude with a necessary and sufficient condition for the inclusion
H,=H, to be proper (I=p<p'<2).

2. Preliminary results. We recall first of all from [4, Lemma 1] that
(fa, g)=a*(f, g) for any f, g € H and a € A. From the fact that 7(f, g)<
I/l ligl [4, Theorem 2], it is easily established that (-, ) is 7-continuous
on HxH and therefore |-|-continuous as well, since = dominates |-|
[6, Corollary 3]. We observe that [f, ga]=tr(ga,f)=tra*(g,f)=
(g.f),a); similarly, [fa,gl=(a, (f,g). Also, [f, gal=tr(g, fla*=
tr(g, fa*)=[fa*, gl.

As in [1], we define the following sets of bounded linear transformations:

R(A) = {T:4 — A| T(ab) = (Ta)b for all a, b € A},
R(AH) = {T:A — H | T(ab) = (Ta)b for all a, b € 4},
R(HA) = {T:H— A | T(fa) = (Tf)afor allfe H,a € A}.
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Still following [1], we define L, € R(HA) for each fe H by L,g=({, g).
(Note that, by standard notation, L, is the operator effecting left multi-
plication by [f] in A4; clearly, Li;; € R(4).) For fe H, we shall define
T, € R(AH) by T,a=fa. By a remark of Giellis [1, p. 65], we have T7T,=
L{;y= Ly The relationship T,=L also holds, since for any f, g € H and
ac 4, [g, Tal=lg. fal=((f. ), &=(L,g. a)=1[g, L}a].

LEMMA 1. Forany fe Hand a€ A, | fa| =|[f]al.

PROOF. |fal*=I[T,a, Tjal=(a, TiT,@=(a, [fFa)=([fla, [fla)=
|[flal.

CoROLLARY 1. |[flle=|[fNlo=ILinll=IT =L,

For any f#0 in H, let > A,e, be the spectral representation of [f]
[7, Theorem 2.5]. We shall denote the countable (possibly finite) set {e,}
by Ei;; and refer to it as the spectral family of [f]. Any projection base
{e,:w € Q} containing every e, € Er,; will be called a projection base
associated with [ f]. In [1, Lemma 1] itis shown thatif > 2,e,, is the spectral
representation of [f], then the operator W, € R(AH) defined for any
x € A by Wx=3 73" fe,x is a partial isometry with f=W [f] and [f]=
W7f. We shall refer to W, as the partial isometry associated with f.

The proofs of our next two lemmas make use of the fact that for any
S € R(A) and 1=p=oo we have |Sa|,=|S] |al,, where |S| denotes the
norm of S as an operator on (4, |-|) [7, Proposition 3.19]. Lemma 2 gives
a similar result for T € R(HA).

Lemma 2. If T € R(HA), then |Tf1, <1 T I f1, 1 Sp= ).

PrOOF. |Tf |,=ITW, [fIL,=ITW I IS ILZITIIWA S ILSNTTIS

LeMMA 3. Ifa€ A and T € R(HA), then there exists g € H such that
L,T=L,; moreover, g, =ZIT| lal, (1=p=c0), where |T| is the norm of
T as a transformation from (H, |-||) to (4, |*]).

PrOOF. The first part of the lemma is Lemma 7 of [1]. We shall
show that ||g||,=|T| lal,, noting that this result is obvious for p=co, in
view of Corollary 1. Assume now that 1=p<co and that 3 ,e, is the
spectral representation of [g]#0. As shown above, we have T,=L7=
T*L¥=T*L,., so that T,[g]=g[g]=T*a*[g], and therefore

WiT*a*[g] = Wiglgl = [gF = D Ae,.

It follows that W} T*a*[gle,=%%e,=A,W)T*a*e,, and we conclude that
Wi¥T*a*e,=1.e,=e,(W;T*a*)*. Now for any b € 4, let P,b=37_, e,b.
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P, is the orthogonal projection onto the right ideal >%_, e,4 in 4, and
P,. € R(A). We have

k
PUWET*a*)* = > e (WET*a*)* = D L,e,.
n=1 n=1

Thus, for each k,

k
D22 le,|® = |PWET*a*)*2 < | P " W) T*a*)?
n=1

S IWITHP la*; = IWFIP IT*17 laly = IT1 lal3.

(We have used the fact that |a|,=l|a*|, [7, Corollary 3.16].) Therefore,
[glz=ITl*lal;, or ligl, =TIl lal,.

3. Proof of Theorem 1. The first statement of the theorem is evident
from the corresponding statements about A, [7, Corollary 3.12]. To
show that H, (1=p=cc) is a linear space we verify that |-], is a linear
space norm, a fact which is obvious for p= o0, by Corollary 1. To establish
subadditivity for |Sp< o, let f and g be any elements of H,, and let
W be the partial isometry associated with f+g. We then have

If+ gll, = IW¥f + @I, = IW*f + W¥gl,
= |W*W,f]1 + W*W,[gll, = IW*W[f]l, + IW*W,[¢]|,
= IWWAIL N, + IW* WL, = If1, + llgl,-

We have again used Proposition 3.19 of [7], as well as the triangle in-
equality for ||, [7, Proposition 3.23]. The remaining properties of a linear
space norm are readily verified. Now for any fe H, a € 4, let W be the
partial isometry associated with fa. We have | fall,=|[fa]|,=|W*fa|,=
[W*fl,lal.. by [7, Corollary 3.20]. Since |a|, =|a| [7, Lemma 3.9],

[W¥fl,lale = IW*IIS], lal = 1115 lal.

Thus H, is a right normed A-module. The final statement of the theorem
follows from corresponding results in A4 [7, Remark 3.5], along with
[1, Lemma 2]: for any f € H,

113 = 1z = 11 = tlf P = (£, /) = U, f1= I fI%

and

/1 = L1 = 7([fD = =()-

We remark that the completeness of (H,, ||:|l,,) for I = p<2 can be estab-
lished by the method of [3, p. 265] as adapted in [1]; however we omit
this proof since it is rendered unnecessary by Theorem 2.
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4. Proof of Theorem 2. The case p=1 is Theorem 2 of [1]. For
1<p=2 we observe that 2=g<co. Forany g € H, (=H) and any f€ H,,
let ¢,(g)=[g.f1=tr(f, g). Clearly, ¢, is a linear functional on H, and the
mapping f—¢, is conjugate-linear. We shall show first that ¢, is bounded
and that ||¢,[| =l fl,. If E={e,:® € Q} is any projection base for 4, we
have

16,2 = Itr(f, D) = Itr(g, ) = |2 (& ew €] S 2 12, fen), €u)]
=D [few geoll = 2 Ifel lgenll = 2 1[fleo] l[glewl,

by Lemma 1. If E'is now taken to be a projection base associated with [f],
we conclude as in the proof of [7, Lemma 3.25] that this last sum does not

exceed [[f11,1[g]l.=Il/ 1,8l

To show that || f]|,=[/¢,ll, we consider the linear functional 6;,; defined
on A, by b;y(a)=tr a[f]. From [7, Proposition 3.26], we have ||6;,|=
I[/N,=Ifl,; hence it suffices to show that [|6;4]=<[¢,|l. Let a be any
element of A,. Then

0@ = Itra[f]] = |traW]f| = |tr L, f|
= |tr(g, )l = |tr(f, &) = |$,(2)I,

where, by Lemma 3, g € H is such that L, W}=L,, with | g|,=<|al,. Using
this last inequality we conclude that [0, ZI¢,l. _

We must show, finally, that the mapping f—¢, is onto the dual of H,.
Let ¢ be any bounded linear functional on H,. For each g € H, (=H),
()| =181l gl <114l lgl, since g=2 .Thus ¢ is bounded on (, ||-[}) and
there exists f € H such that ¢(g)=[g, f]. We need only show that fe H,.
Let > A,e, be the spectral representation of [f], and let

k
v, = z ;f,:—l €, € Aq;
n=1

then

3 1/q K 1/q
104l = (szf-" |en|2) - (Zz: len|2) .
n=1

n=1

Using Lemma 3, we take g, € H such that L, =L, W7, where || g.[l,<|v;l,.
Then for each k,

k k k
Dazlet =i se = (27 mj — ltr o]
— ltr o W] = [tz NI = llgw F1I = 1680
k ol/a
< 161 1l = 1] lesl, = 14 (zﬂ.z |e,,1-) .

n=1
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Thus (35_; Znle,|"?=< | $| for each k, and consequently | ]|, < ]| < oo.

5. Conditions for distinctness of the p-classes. Suppose 1=p<p’'=<2.
In the H*-algebra A, for 4, to be a proper subset of A, it is necessary
and sufficient that 4 be infinite-dimensional [7, Proposition 3.14]. We
shall give a condition for the corresponding relationship to hold in the
case of H, and H,.

An element of H will be called primitive if it is of the form fes£0, where
e is a primitive projection in A4; if || fe| =le|, fe will be called a normal
primitive element. (Note that the primitive projection e is uniquely
determined for fe, since if fe=gp, where p is a primitive projection in
A, then e(f, fle=p(g, g)p=oe=Pp>0; hence e=p.) A pair of primitive
elements fie; and foe, will be called doubly orthogonal if (fie, foes)=
0 and (e;, €,)=0.

PRrOPOSITION 1. For | =p<p’'=2, H, is a proper subset of H, if and
only if H contains an infinite set of pairwise doubly orthogonal primitive
elements.

PrOOF. We note first that there exist nonempty sets of pairwise
doubly orthogonal primitive elements in H, since for any f € H there is a
primitive projection e such that fe£0 (Lemma 1). Now suppose that every
maximal set of such elements is finite, and let { fie,, - - -, fxe,} be a maximal
set. We may assume that the f,e, are normal. We have [f,e,]2=
(fulns fren)=e,[fne, e, =ause, for positive «,, since [f,e,]* is a positive
element of 4. Hence [ f,e,]=a,e,, and from o, /e, |=|[f e, ]l =] f,e.ll=le,|
we conclude that o, =1. Thus for any a € H, | f,e.all=|[f,e.le.a|=le,al,
and hence fe,4 is a closed submodule of 4 isomorphic to the closed right
ideal e, 4. Let M=3%_, f,e,A. Then H=M2=M? where Mr={fe H:
(f,g)=0for all g € M} [4, corollary to Lemma 3]. Clearly, every element
of M belongs to the trace class H. We shall show that the same is true
for elements of M”. Let {e,:» € Q} be a projection base for 4 containing
{e1, -, ey. For any fe M? and any e,3e, (n=1,-- k), fe,=0 or
else fe, would be a primitive element doubly orthogonal to each f,e,
(n=1, -+, k), contradicting maximality. Thus [f]e,=0, by Lemma 1,
and we have [f]=3 [fle,=3_i[fle,: hence [fler4 and fe~H.
Since H is identical with its trace class, H,=H for 1= p=<2.

Suppose, to the contrary, that H contains an infinite set {f,e,:n € N}
of pairwise doubly orthogonal (normal) primitive elements. For 1< p<
p'=2, choose r with p<r< p’, and consider the series > n=/"|e,|~*/?f,e,.
The terms of this series are mutually orthogonal in (H, ||); and, recalling
from above that [f,e,]=e,, we easily show that the squares of their norms
have a finite sum. Thus there exists f € H such that f=73 n=1/7|e, |2/ f,e,.
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Now by the continuity of (-,:) on HxH, we have [f]*=(f,f)=
S nrle, |7V (fre,, fre)=2 n%"le "7 e,; and therefore [f]=
S nlrle,|"%%e,. It is now a simple matter to show, just as in [7,
Proposition 3.14], that f€ H,, but f¢ H,.
We close by remarking that for the condition of Proposition 1 to hold,
A must necessarily be infinite-dimensional, as is evident. This is not
sufficient, however, as is shown by the Hilbert 4-module e4, where e
is a primitive projection and A is topologically simple (the latter condition
assuring that the module is faithful). However, by means of Theorem 6
of [4], along with the accompanying examples, it is readily possible to
provide instances of Hilbert A4-modules possessing the property of
Proposition 1.
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