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THE /7-CLASSES  OF  A HILBERT  MODULE

JAMES  F.  SMITH

Abstract. Let H be a right Hubert module over a proper

//*-algebra A. For 0<p^oo, an extended-real value ||/|]„ is

associated with each fe H, and the /»-class H„ is defined to be

{/£//:II/II„<co}. For l</>á<=°, ("„, H,) is a right normed
/4-module. If l^/>^2, there is a conjugate-linear isometry of

(H„ ||■ y onto the dual of (//„, ||-||,), where (l//>)+(!/?)=1; hence

H„ is complete in its norm.

1. Introduction. Let A be a proper 7/*-algebra with inner product and

norm denoted by (•, •) and |-|, respectively. By a projection in A we mean

a nonzero selfadjoint idempotent, and by a projection base for A we mean

a maximal family of mutually orthogonal projections. The trace class of A,

denoted by 7A, is the set {xy.x, y e A}. It is shown in [6] that a trace func-

tional tr is unambiguously defined on tA by letting tr xy={x,y*) =

2 (xyPw,Pa>)' where {pa:co e Q} is any projection base for A. It is further

shown that for each nonzero a e A there exists a unique positive element

[a] e A (that is, one possessing the property {[a]x, x)^0 for every x e A)

such that [a]2=a*a; moreover, a e tA if and only if [a] e rA. A norm t

is defined on rA by letting r(a) = tr[a]; then (tA,t) is a Banach

»-algebra ([6], [5]). In [7] the present author has shown that each nonzero

positive element b of A has a unique spectral representation ¿>=2 }-nem

where the A, are positive numbers with /, </l, if />/, and the ei are mutually

orthogonal projections. In particular, for any nonzero ae A, if 2 Xnen is

the spectral representation of [a], we define \a\p, for 0<p<co, by \a\p =

2/"k„|2. We also define \a\œ to be Àx, and |0|„=0 for 0</>^oo. The

/»-class /I,,, 0</?^oo, is then defined as {a £ A:\a\p<cc}. Among the

results of [7] are the following: (1) |a|C0 = ||La||, where La denotes, as

usual, the left multiplication operator; (2) A^AV., if 0<p<p'^2, the

inclusion being proper if A is infinite-dimensional; and AV = A if p~^.2; (3)

(A2, \-\2) = (A,\-\) and (Ax, \-\x)={rA, t); (4) (¿„, \-\p) is a normed

»-algebra for 1 ̂ p^co, and is complete for l^p^2.

A (right) Hubert /l-module 77, introduced by Saworotnow in [4], is a

complex linear space which is a right module over the proper 77*-algebra
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A, and on which there is defined a vector inner product (•, •) mapping

HxHinto tA, such that for elements of H: (1) (f+g, h)=(f h)+(g, h);

(2) (f,g)=(g,f)*; (3) (fga)=(f,g)a, where aeA; (4) (/, zg)=z(f,g)
for any complex number a; (5) if/VO then (f,f)=a2 for some (unique)

positive element a5¿0 in A ; we denote this a by [f]; (6) His complete in the

norm ||-|| derived from the inner product [•, •] defined by [/, g] = tr(g,/).

Basic properties of Hubert ^-modules are obtained in [4], among them the

fact that ||/û||^ 11/11 |a| for/e H,ae A; hence a Hubert /1-module is evi-

dently a particular instance of a Banach module (see [2, p. 263]). (We shall

assume without loss of generality that H is a faithful module, since its

right annihilator R is a closed two-sided ideal of A; hence H is always a

faithful Hubert J?—module.) Giellis [1] has defined the trace class of H to

be rH={fa:fe H, aeA} and has defined a norm -n on tH by tr(f)=

t([/]). He has shown that (tH, tt) is a Banach module and has presented

results on duality relationships.

Our present aim is to generalize the results of [1] for Hubert modules,

much as those of [5] and [6] were generalized for i/*-algebras in [7]. For

feH, and for 0</>^co, we define \\f\\P=\[f]\p, and we let HP=

{fe H:\\f \\p<ao} (that is, feHp if and only if [f]eAp). Our results are

the following.

Theorem 1. ForO<p<p'^coandanyfeH, \\f\\P^\\f\\P; henceHpc

HP., and HP = H if p^.2. For l^p^co, (Hp, \\-\\p) is a right normed A-

module. (H2, \\-\\2) = (H, H), and (Hx, \\-\\x) = (rH, tt).

Theorem 2. For \^p<2, letq besuch that (\lp)-\-(\¡q)=\. Then there

exists a conjugate-linear isometry of (HP, \\-\\P) onto the dual of (HQ, \\-\\q);

hence Hp is complete in its norm.

We conclude with a necessary and sufficient condition for the inclusion

HP^HP, to be proper (l£p<p'<2).

2. Preliminary results. We recall first of all from [4, Lemma 1] that

(fa, g)=a*(f, g) for any/, g e H and aeA. From the fact that t(/, g)^

11/11 llgll [4, Theorem 2], it is easily established that (•, •) is r-continuous

on HxH and therefore ||-continuous as well, since t dominates |-|

[6, Corollary 3]. We observe that [/, ga] = tr(ga,f)=tr a*(g,f)=

{(g,f),a); similarly, [fa,g) = {a, (fig)). Also, [f,ga] = ir(g,f)a* =

\r(g,fa*)=[fa*,g\.
As in [1], we define the following sets of bounded linear transformations :

R(A) = {T:A -+A \ T(ab) = (Ta)b for all a, be A),

R(AH) = {T:A-+H\ T(ab) = (Ta)b for all a, be A},

R(HA) = {T:H-+A\ T(fa) = (Tf)a fox all/e H, a e A).
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Still following [1], we define Lf e R(HA) for each fe 77 by Lfg=(f, g).
(Note that, by standard notation, Lr/) is the operator effecting left multi-

plication by [/] in A; clearly, L[neR(A).) For fe 77, we shall define

Tf e R(AH) by Tfa=fa. By a remark of Giellis [1, p. 65], we have 777^=

Llfl=L[f¡2. The relationship Tf=Lj also holds, since for any/, ge H and

aeA, [g, Tfa]=[g,fa]={(fig),a)=(Lfg,a) = [g,L*a].

Lemma 1.   For any fe 77 and aeA, \fa\ = | [f]a\.

Proof. \\fa)\2=[Tfa, Tfa]=(a, T*Tfa)=(a, [f]2a)={[f]a, [/]a) =

|[/]fl|2-

Corollary 1.    ||/||oc = |[/]|00 = ||L[/]|| = ||7/|| = ||L/||.

For any /=¿0 in 77, let 2 Â„en be the spectral representation of [/]

[7, Theorem 2.5]. We shall denote the countable (possibly finite) set {en}

by £[/) and refer to it as the spectral family of [/]. Any projection base

{ew:coeu} containing every en e £r/] will be called a projection base

associated with [/]. In [1, Lemma 1] it is shown that if T lnen is the spectral

representation of [/], then the operator Wf e R(AH) defined for any

x e A by Wfx=^_ Xñ1 fenx is a partial isometry with/= Wf[f] and [/] =

W*f. We shall refer to Wf as the partial isometry associated with/

The proofs of our next two lemmas make use of the fact that for any

SeR(A) and l^p^cc we have |5a|„^||S|| \a\P, where ||S|| denotes the

norm of S as an operator on (A, |-|) [7, Proposition 3.19]. Lemma 2 gives

a similar result for Te R(HA).

Lemma 2.   If Te R(HA), then \Tf\p^\\T\\ \\f\\, (l</>^co).

Proof.   \Tf\,=\TWf[f]\p^\\TWf\\ \[f]\p<\\T\\ \\Wf\\ \\f\\p^\\T\\ \\f\\P.

Lemma 3. If a e A and Te R(HA), then there exists g e 77 such that

LaT=L0; moreover, \\g\\p%\\T\\ \a\P (l^/?^co), where \\T\\ is the norm of

T as a transformation from (77, ||-||) to (A, |-|).

Proof. The first part of the lemma is Lemma 7 of [1]. We shall

show that ]|g||j,^[|71 \a\p, noting that this result is obvious for p=œ, in

view of Corollary 1. Assume now that l^/)<cc and that T Xnen is the

spectral representation of [g]?^. As shown above, we have Tg=L* =

T*L*=T*La„ so that TB[g]=g[g] = T*a*[g], and therefore

W*T*a*[g] = W*g[g] = [g]2 = J fon.

It follows that W*T*a*[g]en=>?nen=lnW*T*a*en, and we conclude that

W*T*a*en = Xnen=en(W*T*a*)*. Now for any b e A, \etPkb = J%=xenb.
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Pk is the orthogonal projection onto the right ideal T*=1 enA in A, and

Pk e R(A). We have

Pk(W*T*a*r = Î en(WtT*a*T = £ V«-
7i=l n=l

Thus, for each /c,

¿Xp k„|2 = |Pfc(W9*T*a*)*|J ^ \\Pk\\»\W*gT*a*\l

^ \\W*T*T \a% ^ \\WX \\TT l< á II TH» \a\%.

(We have used the fact that |ß|J) = |a*|J> [7, Corollary 3.16].) Therefore,

\{g]\l^\\T\\p\a\l,or\\g\\p<\\T\\\a\P.

3. Proof of Theorem 1. The first statement of the theorem is evident

from the corresponding statements about Ap [7, Corollary 3.12]. To

show that HP (1^/?^oc) is a linear space we verify that ||-¡|„ is a linear

space norm, a fact which is obvious forp= oo, by Corollary 1. To establish

subadditivity for l^/?<co, let/and g be any elements of Hp, and let

Wbe the partial isometry associated with/-fg. We then have

11/ + gD, = \w*(f+ g)\p = \w*f+ w*g\p
= \W*Wf[f] + W*Wg[g]\P <: \W*W,m\, + \W*vVg[g]\p

^ \\W*Wf\\ \if)\p + \\W*WJ \[g]\v < i/i, + ||g||„.

We have again used Proposition 3.19 of [7], as well as the triangle in-

equality for |-|„ [7, Proposition 3.23]. The remaining properties of a linear

space norm are readily verified. Now for any/e H, a e A, let W be the

partial isometry associated with fa. We have \\fa\\p=\[fa]\p = \W*fa\P^

\W*f\P\a\x by [7, Corollary 3.20]. Since \a\x^\a\ [7, Lemma 3.9],

l^7ï>La \\W*\\ \\fh\a\< \\f\\p\a\.

Thus Hp is a right normed A-modu\e. The final statement of the theorem

follows from corresponding results in A [7, Remark 3.5], along with

[1, Lemma 2]: for any fe H,

WfWl = IL/1IÎ = li/ll2 = tr[/]2 = tr(/,/) = [/,/] = ||/f,
and

ll/lli = ILfJIi = -KI/]) = «</).

We remark that the completeness of (Hp, \\-\\p) for 1 ̂ p<2 can be estab-

lished by the method of [3, p. 265] as adapted in [1]; however we omit

this proof since it is rendered unnecessary by Theorem 2.
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4. Proof of Theorem 2. The case p = l is Theorem 2 of [1]. For

l</?_2 we observe that 2^q<<x>. For any g e Hq (=77) and any fe Hp,

let <f>f(g)= [g,f]=tr(fi g). Clearly, <pf is a linear functional on 777 and the

mapping f-*-<pt is conjugate-linear. We shall show first that <pf is bounded

and that 11^,11 ^ll/ll,,- If E={eU):co e Q.} is any projection base for A, we

have

\t,(g)\ = Itr(/ g)\ = \tr(g,f)\ = |2 <(g,/)e„, 0| = I K(g,/0, Ol
= 2 II/«- **JI = 2 H/'JI U«*JI = 2 \U]eJ \[g]ej,

by Lemma 1. If £ is now taken to be a projection base associated with [/],

we conclude as in the proof of [7, Lemma 3.25] that this last sum does not

exceed |[f]\,\ fe]|,HI/M$||t.
To show that ||/||p^ 11^/11, we consider the linear functional 0r/] defined

on A„ by din(a) = tr a[f]. From [7, Proposition 3.26], we have ||öt/]|[ =

|[/]|„=||/||i,; hence it suffices to show that ||0r/]ll^ll^ll- Let a be any

element of Aq. Then

|0m(a)| = \tr a[f]\ = \tr aW*f\ = |tr LJ\

= \tr(g,f)\ = \tr(f,g)\ = \$f(g)\,

where, by Lemma 3, g e 77 is such that LaW*—L0, with ||g||3 = |a|c. Using

this last inequality we conclude that ||0r/]||^||<fvl|.

We must show, finally, that the mapping f-»-<pf is onto the dual of 77a.

Let <p be any bounded linear functional on 779. For each g e 77„ (=77),

\<f>(g)\^HW Wgh^HW Wgh since?=2 .Thus <j> is bounded on (77, ||-||)and
there exists/e 77 such that 4>(g)=[g,f]- We need only show that/e 77,,.

Let 2 Xnen be the spectral representation of [/], and let

then

vk= 2 ^eneAQ,
7! = 1

lKQ-"\en\2)   =    2^kJ2     •
»1=1 I \)l=l '

Using Lemma 3, we take gk e 77 such that L„=LV\V*, where

Then for each k,
,=kl,-

7ï=1 71=1 . ^n=l

[/] - Itr vk[f]\

= \tr vkW*f\ = |tr(g,,/)| = |[g,,/]| = \<p(gk)\

1/9

Ú HW hkl ^ HW \vkU = H\
/A v
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Thus (2Li ?.vn\en\2)vpû II«Ml for each k, and consequently \\fl< \\<j>\\ < oo.

5. Conditions for distinctness of the /^-classes. Suppose \^p<p'^2.

In the /F*-algebra A, for Av to be a proper subset of Ap^ it is necessary

and sufficient that A be infinite-dimensional [7, Proposition 3.14]. We

shall give a condition for the corresponding relationship to hold in the

case of HP and Hp..

An element of H will be called primitive if it is of the form/e^O, where

e is a primitive projection in A; if ||_/è||=|e|,/e will be called a normal

primitive element. (Note that the primitive projection e is uniquely

determined for fe, since if fe=gp, where p is a primitive projection in

A, then e(f,f)e=p(g,g)p—a.e=ßpjiCi; hence e=p.) A pair of primitive

elements fxex and f2e2 will be called doubly orthogonal if (fxex, f2e2)=

0 and (ex,e,)=0.

Proposition 1. For l^p<p'^2, Hp is a proper subset of Hp. if and

only if H contains an infinite set of pairwise doubly orthogonal primitive

elements.

Proof. We note first that there exist nonempty sets of pairwise

doubly orthogonal primitive elements in H, since for any/e H there is a

primitive projection e such that/e?í0 (Lemma 1). Now suppose that every

maximal set of such elements is finite, and let {fxex, • • • ,fkek) be a maximal

set. We may assume that the fnen are normal. We have [fnen]2=

(fnen,fnen) = e,t[fne„Y-en = ff.len for positive <x„, since [fne„]2 is a positive

element of A. Hence [/„<?„] = an<?„, and from a.n\en\ = \[fnen]\=\\fnen\\ = \e„\

we conclude that a„ = 1. Thus for any ae H, ||/„e„a|| = | [fnen]ena\ = \ena\,

and hence/„e„/i is a closed submodule of A isomorphic to the closed right

ideal e„A. Let M=7kn=xfnenA. Then H=M@MI>, where Mp = {feH:

(/, g) = 0 for all g e M} [4, corollary to Lemma 3]. Clearly, every element

of M belongs to the trace class tH. We shall show that the same is true

for elements of M". Let {ea:oj e Q} be a projection base for A containing

{ex, ■ ■ ■ ,ek}. For any fe Mv and any exj¿e„ (n=l, • • • ,k),fex=0 or

else fea would be a primitive element doubly orthogonal to each fnen

(n=l, ■ ■ ■ , k), contradicting maximally. Thus [f]ex=0, by Lemma 1,

and we have [/] = T [/]<?„= 2«=i [/]<?„; hence [f]erA and fe tH.

Since H is identical with its trace class, HP=H for 1 ̂ />=2.

Suppose, to the contrary, that H contains an infinite set {fnen:n e N)

of pairwise doubly orthogonal (normal) primitive elements. For l^/><

p'^2, choose r with p<r< p , and consider the series 2 w~1/rkJ_2/3,/n<V

The terms of this series are mutually orthogonal in (H, ||-||); and, recalling

from above that [f„e„]=en, we easily show that the squares of their norms

have a finite sum. Thus there exists fe //such that/=T n~llr\en\~2lp'fnen.



434 J.   F.   SMITH

Now by the continuity of (■, •) on 77x77, we have [/]2=(//) =

ln-2lr\en\-*i»\fnen,fnen)=Jn-2'r\en\-*>»'en; and therefore [/] =

2 n~l/r\en\~i,p en- ^ >s now a simple matter to show, just as in [7,

Proposition 3.14], that/e77„,, butf<£Hp.
We close by remarking that for the condition of Proposition 1 to hold,

A must necessarily be infinite-dimensional, as is evident. This is not

sufficient, however, as is shown by the Hubert /l-module eA, where e

is a primitive projection and A is topologically simple (the latter condition

assuring that the module is faithful). However, by means of Theorem 6

of [4], along with the accompanying examples, it is readily possible to

provide instances of Hubert /1-modules possessing the property of

Proposition 1.
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