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SELECTION  OF REPRESENTING  MEASURES
FOR INNER PARTS

PETER  D.  TAYLOR

Abstract. If a compact convex set K has an inner part A then

there is a selection of pairwise boundedly absolutely continuous

representing measures for A if and only if K is finite dimensional.

Let K denote a compact convex set in a LCTVS, AiK) the affine con-

tinuous real functions on K, 0>iK) the set of regular Borel probability

measures on K. Let <í> : 3PiK)-+K be the map which associates to each

measure ¡x its barycentre. Then O is affine, weak* continuous, and onto

K. If <$>ip) = x we say p represents x.

If L is any convex set, x, y e L and r>0, we say [x, y] extends by r in L

if x + rix—y) e L and y+riy—x) e L. We write x~y if 3 r>0 such that

[x, y] extends by r in L. This is an equivalence relation on L and the

equivalence classes are the parts of L. It is easy to show that $ carries

parts into parts: If n is a part of SPLK) then 0(11) is contained in a part of

K. Conversely if A is a part of K and F is any finite subset of A then there

exists a part n of 0>iK) such that FcO(Il). Indeed if F={x1, x2, ■■ ■ , xn)

choose yt and z,- in K such that xx e iy¡, z¿), the open line segment with

endpoints y\ and z¿, and xt e (/,-, Xj) (2^z'<n). If <!>(/*,)=/, and 0(i',)=z¿

for pi, v¡ e 0>iK), then the part II containing y ip.i + v,)H2n — 2) satisfies

F<=<J)(n). Indeed since x1eiyi,zz) for each /, we can clearly find a

representing measure <o for x1 in IL Since x¿ e (y¡, x^, an affine combi-

nation of p¡ and fo yields a representing measure for x¿ in II.

Thus if A is a part of K one might ask whether

(1) A = (D(ri)   for some part n of &(K).

Indeed Bear posed this question in [3] and reproduced an example of

Har'kova [4] to show that (1) need not hold if 3?iK) is replaced by ^(T)

where T is the Shilov boundary of AiK).

Since two probability measures p and v on K are in the same part of

&ÍK) if and only if p^kv and v^kp for some k, condition (1) asserts
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the existence for A of a selection of representing measures on K which are

pairwise boundedly absolutely continuous. There are two special cases

when (1) is true for all parts A of K. One is when K is a simplex, for then

there are unique maximal representing measures [6, §9], the other when

A" is finite dimensional (Theorem 1).

Let Kl={x G K:Çi y g K)il r>0)x+rix-y) g K\. It can happen that

K'= 0 , but if K' ?* 0 it is a part of K called the inner part. Finite dimen-

sional convex sets, for example, always have nonempty inner parts. In

Theorem 1 we show that if ¿s = K'¿¿0 then (1) holds for A if and only if

K is finite dimensional.

First some preliminaries. If L is a compact convex set, x, y e L and

x<~r; let

dix,y) = inf{log(l + 1/r): [x,y] extends by r}.

In [3, Lemma 3.4] it is shown that d is a metric on each part of L,

called the part metric. Now denote by d and D the part metrics on K and

éPiK) respectively and let

bix, r) = {y G K.dix.y) ^ r)    and    Bip, r) = {v e ^iK):Dip, v) ^ r).

Lemma 1. Suppose A is a part of K,U a part of &ÍK), and A = 3>(l"I).

Then there exist p g TI and positive numbers M and k such that if x = <!>(//)

then

bix, Iog(l + 1/A/)) c <S>iBip, logfc)).

Proof. If v g II then the sets ®(£(v, r)) are closed in the part metric

topology. Indeed suppose xn = <pipn) with pneBiv,r) and dixn, x)-*0.

Choose a subset p„ converging weak* to p. Since B(v, r) is weak* closed

(easy to check), p e 5(v, r). Since <D is weak* continuous, x„ converges

in K to <&ip). But since £/(x„a, x)—>-0, x„ converges in K to x, hence

x=<t>ifj.) g 0(5(v, r)). (It is an easily verified general fact that in any

part of a compact convex set the part metric topology is stronger than the

relativized compact topology.)

Since A = 0(n)=U^=i 0(5(v, n)) and the part metric on A is complete

[1, §3], the Baire category theorem tells us that we can find x e A and inte-

gers h and M such that bix, log(l + l/A/))<=0(5(r, h)). Choose p.Gi\

such that <í>ip) = x and choose k such that 5(v, h)^ Bip, log k).    G

Lemma 2.    Suppose x e £'. Then 3 <5>0 such that

vgK=> x + bix - y) g K.

Proof. Let H=K—x. Then 0 € H' and so H r\ —H is closed, convex

and absorbs each point of H and —H. Since H is compact, convex,



1972] REPRESENTING  MEASURES FOR INNER  PARTS 539

H n -//absorbs H [5, Corollary 10.2]. Thus 3 <5>0 such that ÔHcH n
-He-H. Thus

y e A"=>y - x eH=> ô(y - x) e-H=>x + <5(.v -y)eK.    D

If A is a normed linear space and e^O let BE = {h e A: \\h\\ ̂ e}.

Lemma 3. Suppose E is a normed linear space and G is a weak* closed

subspace of the dual space E*. Suppose x e E*, r^.0 and (,Y+5r)nG=0.

Then IfeEsuch that ||/|| = 1, /(C)=0 andfix)>r.

Proof. x+Br is weak* compact and G is weak* closed. Hence

3/e £ such that ||/|| = l,/(G)<a and/(.v+ßr)^a for some a. Since G

is a subspace, <x>0 and/(G)=0. Since ||/|| = 1 we can find y e BT such

that fiy)>r— a.  Then x—y £ x + Br  so fix— v)^a  hence /(x)^a+

f(y)>r.    D
Now for the main theorem. We always think of K as embedded in the

Banach space AiK)* with the weak* topology. The norm of AiK)*

provides a metric topology on K which we will refer to as the norm

topology.

Theorem 1.    Suppose A=K'^ 0. Then the following are equivalent.

(1) A=<D(n)/or some part XI of 0>iK).
(2) K is finite dimensional.

Proof. (1)=>(2). Suppose (1) and suppose that K is metrizable. We

will show that, in this case, K is finite dimensional. Then we will reduce the

general case to this one.

We first show that K is norm separable. If p e W then Y\czL1ip) (via

Radon Nikodym), and the norm topology that II gets from L1^) is the

same as the norm topology it gets as a subset of ^(/Q*. Indeed if g, he

L1ip) then

sup fig - h)dp= \\gdp - h dp\\
WIA'):!!/!!«,-! J

=      sup        i/(g-Ä)^=ll*-A||i,
/€¿tD:||/|lcc=i J

where ||-|| denotes the variation norm in the Banach space JtiK) of

Radon measures on K. Since L1ip) is separable (A" is metrizable), II is

norm separable in #(/Q*. Since <I> is the restriction to £?iK) of the natural,

norm-decreasing surjection <S>:<ëiK)*-+AiK)*, A=<E>(FI) is norm separ-

able. Since A=K* is norm dense in K, K is norm separable.

Now we show that K is norm compact. Since K is norm complete it will

be enough to find for any «>0a finite set Fc AiK)* such that Ka F+B2e.

So suppose £>0. Choose p, M, k and x from Lemma 1 and 6 from
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Lemma 2 so that ¿(1 + 1 \M)^ 1. Since K is norm separable, we can cover

K with countably many balls of norm radius r=so¡2M. A finite number

of these balls contains all but at most y=eô/2kM of the measure p. Let 5

be a finite dimensional subspace of AiK)* containing x and the centres of

these finitely many balls.

We claim that A"<=5+5£. Indeed suppose y e K but y£P+Bt. Let

z=x+iôlM)iy-x). Then zgK and </(x,z)^]og(l + l/Ai). Indeed

x + Mix—z)=x+ôix— y) which is in K by Lemma 2, and z+M(z—x) =

x+ai\ + \¡M)iy-x) which is in K since <5(1 + 1/M)^1. So by Lemma 1

we can choose v g Bip, log k) such that z=$(v). An easy computation

shows that dv=gdp with l/k^g^k. Also, since 5 is weak* closed and

y$P+Bt we can find feA iK) such that ||/|| = 1,/(5)=0 and/(v)>£
(Lemma 3). Then

/(z) = iô/M)fiy) > eèjM,   and

vif) = í/g 4" = Í      /g 4« + Í      /g dp
J J\f\ÉT J\f\>r

^ rjg dp + 11/11 k ■ pi{\f\ >r})^r + ky= eô/M

(where pi{\f\>r})<y since |/(w)| >r=>tr $P+Br). Since /e /4(A) and

0(}))=z we must have v(/)=/(z), a contradiction.

So Kcp+Bc. Hence Acz [(Af+ß£)n5] + 5£. Now iK+Bc)r\P is finite

dimensional and norm bounded, so relatively norm compact, and we

can choose a finite set F<=AiK)* so that F+Bt contains it. Hence

K^F+B2t.
So K is norm compact. We deduce that the unit ball Bx of AiK)* is

norm compact. Indeed it follows from the Hahn Banach Theorem that

every element of AiK)* is given by a Radon measure on K. Use the Hahn

decomposition of this measure and the fact that any probability measure

on K has a barycentre in K to deduce that, for any X e Bx, there exists

k, h G AT andOr^a, ß<\ such that

/(/) - xfik) - ßfih)       if G AiK)).

Thus Bx is contained in a continuous image of KxKx [0, l]x [0, 1], and

is norm compact. It follows that AiK)* is finite dimensional, and so is K.

Now drop the metrizability assumption; suppose K has (1) but is not

finite dimensional. Choose a countably infinite, linearly independent

sequence {/"„}<= AiK) such that ||/ft||^2_B. Define the map Y from K

into I2 by T(x)7,=/n(x). W is affine and continuous, hence maps K onto

a compact convex subset H oí I2. From Lemma 4 below Hi=xYiKi)9i0 ■

Since every x e K' has a representing measure in II, every h e H' has a
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representing measure in n °y¥~1={/u. oNP-1:,« g II}. Since II is a part of

&ÍK), n oT"1 is contained in a part of 2?iH) (from linearity of the

map /<^/í«t'"1). So H has property (1) and since it is metrizable it is,

by the first part of the proof, finite dimensional. This contradicts the

linear independence of {/„}.

Lemma 4. Suppose K and H are convex sets and K'j£0. Suppose

Y:K-+H is affine and onto. Then &=*¥{&).

Proof. Clearly *F(Kl)czW. Assume xeH'. Choose z' e Kl and let

z=T(z'). Since x e H', x = Xz+il-X)w for some ir G H, 0<X< 1. Choose

w' e K such that xF(vv') = ir. Then if x' = Xz' + i\ -X)w' we have T(.y')=x

and x' g A< since z e K' and 0</< 1. So x gTYA*).

(2)=>(1). Suppose K is of dimension m and is in fact contained in R'".

If x g K' then A" contains an open line segment containing x in the direc-

tion of each coordinate axis. From the convexity of K we deduce that K

and hence K{ contains an open ball in R'" containing .v. Hence K' is open
in Rm.

Choose {z¡}, a countable dense subset of F(A). Let /« = 2íc((5(z,:)/2i)

(ó(z)=delta measure at z). We will show K'cct>(n) where n is the part

of ¿?iK) containing p. Choose y e K'. Let 0(,a)=A- g K. Since y e A1 we

can choose »v G A' and l><x>0 so v = a.v + (l — a)ir. Choose £>0 so,
V g g Rm,

Hg—it'll < s=>geK   (||-|| is Euclidean norm in Rm).

Choose n so {z,, z2, ■ • • , zj is an £-net for £(A). We claim that w e

co{z1; z2, • • • , zn}. If not 3 y g Rm, \\y\\=\ such that (y, w)>iy, z¡) for

1 ̂ i^n. Now H'+sy e A. Thus 3 z g F(A) so that

(y, z) ^ (y. »' + £y) = (y. ») + £ > (y. z>) + £>      ' ^ ' ^ «•

It follows that ||z—z,-||>e if l^i^n. This contradicts the choice of«.

So ir g co{z!, z2, ■ ■ ■ , z„}. This provides a measure v e S^iK) such that

<E>(v) = ir and v^2"p. Clearly the probability measure ap + i\— a)v

represents;'. It is in n since a>0 and <xp^a.p + i\— a)v^ioL+2")p.

Remarks. (1) I am grateful to H. S. Bear for his interest in this work.

He pointed out to me that my original proof of Theorem 1 was valid

only for metrizable K, and supplied the simple geometric proof of Lemma

4. I am also grateful to the referee for indicating several places where a

few more details would substantially improve the exposition.

(2) A stronger version of Lemma 1 follows immediately from Bauer's

open mapping theorem (to appear in Equationes Mathematicae, see

[3, Theorems 5-13]).
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(3) There remains the problem for general parts: Find a condition

(geometric or topological) on a part A of A" equivalent to (1).
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