SELECTION OF REPRESENTING MEASURES FOR INNER PARTS

PETER D. TAYLOR

ABSTRACT. If a compact convex set K has an inner part Δ then there is a selection of pairwise boundedly absolutely continuous representing measures for Δ if and only if K is finite dimensional.

Let K denote a compact convex set in a LCTVS, A(K) the affine continuous real functions on K, $\mathcal{P}(K)$ the set of regular Borel probability measures on K. Let $\Phi: \mathcal{P}(K) \rightarrow K$ be the map which associates to each measure μ its barycentre. Then Φ is affine, weak* continuous, and onto K. If $\Phi(\mu) = x$ we say μ represents x.

If L is any convex set, $x, y \in L$ and r > 0, we say [x, y] extends by r in L if $x+r(x-y) \in L$ and $y+r(y-x) \in L$. We write $x \sim y$ if $\exists r > 0$ such that [x, y] extends by r in L. This is an equivalence relation on L and the equivalence classes are the parts of L. It is easy to show that Φ carries parts into parts: If Π is a part of $\mathcal{P}(K)$ then $\Phi(\Pi)$ is contained in a part of K. Conversely if Δ is a part of K and F is any finite subset of Δ then there exists a part Π of $\mathcal{P}(K)$ such that $F \subset \Phi(\Pi)$. Indeed if $F = \{x_1, x_2, \cdots, x_n\}$ choose y_i and z_i in K such that $x_1 \in (y_i, z_i)$, the open line segment with endpoints y_i and z_i , and $z_i \in (y_i, z_i)$ ($2 \le i \le n$). If $\Phi(\mu_i) = y_i$ and $\Phi(\nu_i) = z_i$ for μ_i , $\nu_i \in \mathcal{P}(K)$, then the part Π containing $\sum (\mu_i + \nu_i)/(2n - 2)$ satisfies $F \subset \Phi(\Pi)$. Indeed since $x_1 \in (y_i, z_i)$ for each i, we can clearly find a representing measure ω for x_1 in Π . Since $x_i \in (y_i, x_1)$, an affine combination of μ_i and ω yields a representing measure for x_i in Π .

Thus if Δ is a part of K one might ask whether

(1)
$$\Delta = \Phi(\Pi)$$
 for some part Π of $\mathscr{P}(K)$.

Indeed Bear posed this question in [3] and reproduced an example of Har'kova [4] to show that (1) need not hold if $\mathcal{P}(K)$ is replaced by $\mathcal{P}(\Gamma)$ where Γ is the Shilov boundary of A(K).

Since two probability measures μ and ν on K are in the same part of $\mathscr{P}(K)$ if and only if $\mu \leq k\nu$ and $\nu \leq k\mu$ for some k, condition (1) asserts

Received by the editors September 11, 1970.

AMS (MOS) subject classifications (1970). Primary 52A20, 31B10; Secondary 46E10, 28A40.

[©] American Mathematical Society 1973

the existence for Δ of a selection of representing measures on K which are pairwise boundedly absolutely continuous. There are two special cases when (1) is true for all parts Δ of K. One is when K is a simplex, for then there are unique maximal representing measures [6, §9], the other when K is finite dimensional (Theorem 1).

Let $K^i = \{x \in K : (\forall y \in K)(\exists r > 0)x + r(x - y) \in K\}$. It can happen that $K^i = \emptyset$, but if $K^i \neq \emptyset$ it is a part of K called the *inner part*. Finite dimensional convex sets, for example, always have nonempty inner parts. In Theorem 1 we show that if $\Delta = K^i \neq \emptyset$ then (1) holds for Δ if and only if K is finite dimensional.

First some preliminaries. If L is a compact convex set, $x, y \in L$ and $x \sim y$; let

$$d(x, y) = \inf\{\log(1 + 1/r): [x, y] \text{ extends by } r\}.$$

In [3, Lemma 3.4] it is shown that d is a metric on each part of L, called the *part metric*. Now denote by d and D the part metrics on K and $\mathcal{P}(K)$ respectively and let

$$b(x,r) = \{ y \in K : d(x,y) \le r \} \quad \text{and} \quad B(\mu,r) = \{ v \in \mathscr{P}(K) : D(\mu,\nu) \le r \}.$$

LEMMA 1. Suppose Δ is a part of K, Π a part of $\mathscr{P}(K)$, and $\Delta = \Phi(\Pi)$. Then there exist $\mu \in \Pi$ and positive numbers M and k such that if $x = \Phi(\mu)$ then

$$b(x, \log(1 + 1/M)) \subseteq \Phi(B(\mu, \log k)).$$

PROOF. If $v \in \Pi$ then the sets $\Phi(B(v, r))$ are closed in the part metric topology. Indeed suppose $x_n = \phi(\mu_n)$ with $\mu_n \in B(v, r)$ and $d(x_n, x) \to 0$. Choose a subset μ_{n_α} converging weak* to μ . Since B(v, r) is weak* closed (easy to check), $\mu \in B(v, r)$. Since Φ is weak* continuous, x_{n_α} converges in K to $\Phi(\mu)$. But since $d(x_{n_\alpha}, x) \to 0$, x_{n_α} converges in K to x, hence $x = \Phi(\mu) \in \Phi(B(v, r))$. (It is an easily verified general fact that in any part of a compact convex set the part metric topology is stronger than the relativized compact topology.)

Since $\Delta = \Phi(\Pi) = \bigcup_{n=1}^{\infty} \Phi(B(\nu, n))$ and the part metric on Δ is complete [1, §3], the Baire category theorem tells us that we can find $x \in \Delta$ and integers h and M such that $b(x, \log(1+1/M)) \subseteq \Phi(B(\nu, h))$. Choose $\mu \in \Pi$ such that $\Phi(\mu) = x$ and choose k such that $B(\nu, h) \subseteq B(\mu, \log k)$. \square

LEMMA 2. Suppose $x \in K^i$. Then $\exists \delta > 0$ such that

$$y \in K \Rightarrow x + \delta(x - y) \in K$$
.

PROOF. Let H=K-x. Then $0 \in H^i$ and so $H \cap -H$ is closed, convex and absorbs each point of H and -H. Since H is compact, convex,

 $H \cap -H$ absorbs H [5, Corollary 10.2]. Thus $\exists \delta > 0$ such that $\delta H \subseteq H \cap -H \subseteq -H$. Thus

$$y \in K \Rightarrow y - x \in H \Rightarrow \delta(y - x) \in -H \Rightarrow x + \delta(x - y) \in K$$
. \square

If A is a normed linear space and $\varepsilon \ge 0$ let $B_{\varepsilon} = \{h \in A : ||h|| \le \varepsilon\}$.

LEMMA 3. Suppose E is a normed linear space and G is a weak* closed subspace of the dual space E^* . Suppose $x \in E^*$, $r \ge 0$ and $(x + B_r) \cap G = \emptyset$. Then $\exists f \in E$ such that ||f|| = 1, f(G) = 0 and f(x) > r.

PROOF. $x+B_r$ is weak* compact and G is weak* closed. Hence $\exists f \in E$ such that ||f||=1, $f(G)<\alpha$ and $f(x+B_r)\geq \alpha$ for some α . Since G is a subspace, $\alpha>0$ and f(G)=0. Since ||f||=1 we can find $y\in B_r$ such that $f(y)>r-\alpha$. Then $x-y\in x+B_r$ so $f(x-y)\geq \alpha$ hence $f(x)\geq \alpha+f(y)>r$. \square

Now for the main theorem. We always think of K as embedded in the Banach space $A(K)^*$ with the weak* topology. The norm of $A(K)^*$ provides a metric topology on K which we will refer to as the norm topology.

THEOREM 1. Suppose $\Delta = K^i \neq \emptyset$. Then the following are equivalent.

- (1) $\Delta = \Phi(\Pi)$ for some part Π of $\mathscr{P}(K)$.
- (2) K is finite dimensional.

PROOF. (1) \Rightarrow (2). Suppose (1) and suppose that K is metrizable. We will show that, in this case, K is finite dimensional. Then we will reduce the general case to this one.

We first show that K is norm separable. If $\mu \in \Pi$ then $\Pi \subset L^1(\mu)$ (via Radon Nikodym), and the norm topology that Π gets from $L^1(\mu)$ is the same as the norm topology it gets as a subset of $\mathscr{C}(K)^*$. Indeed if $g, h \in L^1(\mu)$ then

$$\sup_{f \in \mathcal{C}(K): \|f\|_{\infty}=1} \int f(g-h) \, d\mu = \|g \, d\mu - h \, d\mu\|$$

$$= \sup_{f \in L^{\infty}: \|f\|_{\infty}=1} \int f(g-h) \, d\mu = \|g-h\|_{1},$$

where $\|\cdot\|$ denotes the variation norm in the Banach space $\mathcal{M}(K)$ of Radon measures on K. Since $L^1(\mu)$ is separable (K is metrizable), Π is norm separable in $\mathcal{C}(K)^*$. Since Φ is the restriction to $\mathcal{P}(K)$ of the natural, norm-decreasing surjection $\Phi:\mathcal{C}(K)^* \to A(K)^*$, $\Delta = \Phi(\Pi)$ is norm separable. Since $\Delta = K^i$ is norm dense in K, K is norm separable.

Now we show that K is norm compact. Since K is norm complete it will be enough to find for any $\varepsilon > 0$ a finite set $F \subset A(K)^*$ such that $K \subset F + B_{2\varepsilon}$. So suppose $\varepsilon > 0$. Choose μ , M, k and x from Lemma 1 and δ from

Lemma 2 so that $\delta(1+1/M) \le 1$. Since K is norm separable, we can cover K with countably many balls of norm radius $r = \varepsilon \delta/2M$. A finite number of these balls contains all but at most $\gamma = \varepsilon \delta/2kM$ of the measure μ . Let P be a finite dimensional subspace of $A(K)^*$ containing x and the centres of these finitely many balls.

We claim that $K \subset P + B_{\varepsilon}$. Indeed suppose $y \in K$ but $y \notin P + B_{\varepsilon}$. Let $z = x + (\delta/M)(y - x)$. Then $z \in K$ and $d(x, z) \leq \log(1 + 1/M)$. Indeed $x + M(x - z) = x + \delta(x - y)$ which is in K by Lemma 2, and $z + M(z - x) = x + \delta(1 + 1/M)(y - x)$ which is in K since $\delta(1 + 1/M) \leq 1$. So by Lemma 1 we can choose $v \in B(\mu, \log k)$ such that $z = \Phi(v)$. An easy computation shows that $dv = g d\mu$ with $1/k \leq g \leq k$. Also, since P is weak* closed and $y \notin P + B_{\varepsilon}$ we can find $f \in A(K)$ such that ||f|| = 1, f(P) = 0 and $f(y) > \varepsilon$ (Lemma 3). Then

$$f(z) = (\delta/M)f(y) > \varepsilon \delta/M, \text{ and}$$

$$v(f) = \int fg \ d\mu = \int_{|f| \le r} fg \ d\mu + \int_{|f| > r} fg \ d\mu$$

$$\leq r \int g \ d\mu + \|f\| \ k \cdot \mu(\{|f| > r\}) \le r + k\gamma = \varepsilon \delta/M$$

(where $\mu(\{|f|>r\}) \leq \gamma$ since $|f(w)|>r \Rightarrow w \notin P+B_r$). Since $f \in A(K)$ and $\Phi(v)=z$ we must have $\nu(f)=f(z)$, a contradiction.

So $K \subset P + B_{\varepsilon}$. Hence $K \subset [(K + B_{\varepsilon}) \cap P] + B_{\varepsilon}$. Now $(K + B_{\varepsilon}) \cap P$ is finite dimensional and norm bounded, so relatively norm compact, and we can choose a finite set $F \subset A(K)^*$ so that $F + B_{\varepsilon}$ contains it. Hence $K \subset F + B_{2\varepsilon}$.

So K is norm compact. We deduce that the unit ball B_1 of $A(K)^*$ is norm compact. Indeed it follows from the Hahn Banach Theorem that every element of $A(K)^*$ is given by a Radon measure on K. Use the Hahn decomposition of this measure and the fact that any probability measure on K has a barycentre in K to deduce that, for any $\lambda \in B_1$, there exists $k, h \in K$ and $0 \le \alpha, \beta \le 1$ such that

$$\lambda(f) = \alpha f(k) - \beta f(h) \qquad (f \in A(K)).$$

Thus B_1 is contained in a continuous image of $K \times K \times [0, 1] \times [0, 1]$, and is norm compact. It follows that $A(K)^*$ is finite dimensional, and so is K.

Now drop the metrizability assumption; suppose K has (1) but is not finite dimensional. Choose a countably infinite, linearly independent sequence $\{f_n\} \subset A(K)$ such that $||f_n|| \le 2^{-n}$. Define the map Ψ from K into l^2 by $\Psi(x)_n = f_n(x)$. Ψ is affine and continuous, hence maps K onto a compact convex subset H of l^2 . From Lemma 4 below $H^i = \Psi(K^i) \ne \emptyset$. Since every $x \in K^i$ has a representing measure in Π , every $h \in H^i$ has a

representing measure in $\Pi \circ \Psi^{-1} = \{\mu \circ \Psi^{-1} : \mu \in \Pi\}$. Since Π is a part of $\mathscr{P}(K)$, $\Pi \circ \Psi^{-1}$ is contained in a part of $\mathscr{P}(H)$ (from linearity of the map $\mu \to \mu \circ \Psi^{-1}$). So H has property (1) and since it is metrizable it is, by the first part of the proof, finite dimensional. This contradicts the linear independence of $\{f_n\}$.

LEMMA 4. Suppose K and H are convex sets and $K^i \neq \emptyset$. Suppose $\Psi: K \rightarrow H$ is affine and onto. Then $H^i = \Psi(K^i)$.

PROOF. Clearly $\Psi(K^i) \subset H^i$. Assume $x \in H^i$. Choose $z' \in K^i$ and let $z = \Psi(z')$. Since $x \in H^i$, $x = \lambda z + (1 - \lambda)w$ for some $w \in H$, $0 < \lambda < 1$. Choose $w' \in K$ such that $\Psi(w') = w$. Then if $x' = \lambda z' + (1 - \lambda)w'$ we have $\Psi(x') = x$ and $x' \in K^i$ since $z' \in K^i$ and $0 < \lambda < 1$. So $x \in \Psi(K^i)$.

 $(2)\Rightarrow(1)$. Suppose K is of dimension m and is in fact contained in R^m . If $x \in K^i$ then K contains an open line segment containing x in the direction of each coordinate axis. From the convexity of K we deduce that K and hence K^i contains an open ball in R^m containing x. Hence K^i is open in R^m .

Choose $\{z_i\}$, a countable dense subset of E(K). Let $\mu = \sum_{1}^{\infty} (\delta(z_i)/2^i)$ $(\delta(z))$ = delta measure at z). We will show $K^i \subset \Phi(\Pi)$ where Π is the part of $\mathscr{P}(K)$ containing μ . Choose $y \in K^i$. Let $\Phi(\mu) = x \in K$. Since $y \in K^i$ we can choose $w \in K^i$ and $1 > \alpha > 0$ so $y = \alpha x + (1 - \alpha)w$. Choose $\varepsilon > 0$ so, $\forall g \in R^m$,

$$\|g-w\| < \varepsilon \Rightarrow g \in K \quad (\|\cdot\| \text{ is Euclidean norm in } R^m).$$

Choose n so $\{z_1, z_2, \dots, z_n\}$ is an ε -net for E(K). We claim that $w \in \operatorname{co}\{z_1, z_2, \dots, z_n\}$. If not $\exists \ \gamma \in R^m, \ \|\gamma\| = 1$ such that $(\gamma, w) > (\gamma, z_i)$ for $1 \le i \le n$. Now $w + \varepsilon \gamma \in K$. Thus $\exists \ z \in E(K)$ so that

$$(\gamma, z) \ge (\gamma, w + \varepsilon \gamma) = (\gamma, w) + \varepsilon > (\gamma, z) + \varepsilon, \quad 1 \le i \le n.$$

It follows that $||z-z_i|| > \varepsilon$ if $1 \le i \le n$. This contradicts the choice of n.

So $w \in \operatorname{co}\{z_1, z_2, \dots, z_n\}$. This provides a measure $v \in \mathscr{P}(K)$ such that $\Phi(v) = w$ and $v \leq 2^n \mu$. Clearly the probability measure $\alpha \mu + (1 - \alpha)v$ represents y. It is in Π since $\alpha > 0$ and $\alpha \mu \leq \alpha \mu + (1 - \alpha)v \leq (\alpha + 2^n)\mu$.

REMARKS. (1) I am grateful to H. S. Bear for his interest in this work. He pointed out to me that my original proof of Theorem 1 was valid only for metrizable K, and supplied the simple geometric proof of Lemma 4. I am also grateful to the referee for indicating several places where a few more details would substantially improve the exposition.

(2) A stronger version of Lemma 1 follows immediately from Bauer's open mapping theorem (to appear in Equationes Mathematicae, see [3, Theorems 5-13]).

(3) There remains the problem for general parts: Find a condition (geometric or topological) on a part Δ of K equivalent to (1).

REFERENCES

- 1. Heinz Bauer and H. S. Bear, The part metric in convex sets, Pacific J. Math. 30 (1969), 15-33.
- 2. H. S. Bear, Continuous selection of representing measures, Bull. Amer. Math. Soc. 76 (1970), 366-369. MR 41 #2395.
- 3. ——, Lectures on Gleason parts, Lecture Notes in Math., vol. 121, Springer-Verlag, Berlin and New York, 1970. MR 41 #5950.
- 4. N. V. Har'kova, Generalized Poisson formula, Vestnik Moskov. Univ. Ser. I Mat. Meth. 22 (1967), no. 4, 25-30. (Russian) MR 35 #4733.
- 5. J. L. Kelley and I. Namioka, *Linear topological spaces*, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1963. MR 29 #3851.
- 6. R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N.J., 1966. MR 33 #1690.

DEPARTMENT OF MATHEMATICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA