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SELECTION OF REPRESENTING MEASURES
FOR INNER PARTS

PETER D. TAYLOR

ABSTRACT. If a compact convex set K has an inner part A then
there is a selection of pairwise boundedly absolutely continuous
representing measures for A if and only if K is finite dimensional.

Let K denote a compact convex set in a LCTVS, A(K) the affine con-
tinuous real functions on K, Z(K) the set of regular Borel probability
measures on K. Let @ : #(K)—K be the map which associates to each
measure u its barycentre. Then @ is affine, weak* continuous, and onto
K. If ®(u)=x we say u represents x.

If L is any convex set, x, y € L and r>0, we say [x, y] extends by r in L
if x+r(x—y) e L and y+r(y—x) e L. We write x~y if 3 r>0 such that
[x, y] extends by r in L. This is an equivalence relation on L and the
equivalence classes are the parts of L. It is easy to show that ® carries
parts into parts: If I is a part of 2(K) then ®(I1) is contained in a part of
K. Conversely if A is a part of K and F is any finite subset of A then there
exists a part IT of 2(K) such that F< ®(I1). Indeed if F={x;, x;, " ", x,}
choose y; and z; in K such that x, € (y;, z;), the open line segment with
endpoints y; and z;, and x, € (y;, x;) 2=Zi=n). If ®(u,)=y; and (v))=z;
for u;, v, € P(K), then the part Il containing > (u;+7,)/(2n—2) satisfies
F<®(Il). Indeed since x, € (y;, z;) for each i, we can clearly find a
representing measure o for x, in Il. Since x; € (y;, x,), an affine combi-
nation of u, and o yields a representing measure for x, in I

Thus if A is a part of K one might ask whether

4)) A = ®(Il) for some part IT of 2(K).

Indeed Bear posed this question in [3] and reproduced an example of
Har’kova [4] to show that (1) need not hold if Z(K) is replaced by Z(T")
where T is the Shilov boundary of A(K).

Since two probability measures 4 and v on K are in the same part of
Z#(K) if and only if u=kv and v=ku for some k, condition (1) asserts

Received by the editors September 11, 1970.
AMS (MOS) subject classifications (1970). Primary 52A20, 31B10; Secondary 46E10,
28A40.

© American Mathematical Society 1973

537



538 P. D. TAYLOR [December

the existence for A of a selection of representing measures on K which are
pairwise boundedly absolutely continuous. There are two special cases
when (1) is true for all parts A of K. One is when K is a simplex, for then
there are unique maximal representing measures [6, §9], the other when
K is finite dimensional (Theorem 1).

Let Ki={xe K: (¥ ye K)(3 r>0)x+r(x—y) € Kj. It can happen that

i=g, butif K42 itis a part of K called the inner part. Finite dimen-
sional convex sets, for example, always have nonempty inner parts. In
Theorem | we show that if A=K’s ¢ then (1) holds for A if and only if
K is finite dimensional.

First some preliminaries. If L is a compact convex set, x, y € L and
x~y; let

d(x, y) = inf{log(1 + 1/r):[x, y] extends by r}.

In [3, Lemma 3.4] it is shown that d is a metric on each part of L,
called the part metric. Now denote by d and D the part metrics on K and
P(K) respectively and let

b(x,r)={yeKid(x,y) =r; and B(u,r)={re P(K):D(u,v) =rj.

LEMMA 1. Suppose A is a part of K, 11 a part of Z(K), and A=d(I1).
Then there exist u € I1 and positive numbers M and k such that if x=®(u)
then

b(x.log(l + 1/M)) = ®(B(u, log k).

Proor. If v €Il then the sets ®(B(v, r)) are closed in the part metric
topology. Indeed suppose x,=¢(u,) with u, € B(»,r) and d(x,, x)—0.
Choose a subset u,, converging weak™* to u. Since B(v,r) is weak* closed
(easy to check), u € B(v, r). Since @ is weak* continuous, x, converges
in K to ®(u). But since d(x, , x)—0, x, converges in K to x, hence
x=®(u) € ®(B(v, r)). (It is an easily verified general fact that in any
part of a compact convex set the part metric topology is stronger than the
relativized compact topology.)

Since A=®(IN)=UZ; ®(B(v, n)) and the part metric on A is complete
[1, §3], the Baire category theorem tells us that we can find x € A and inte-
gers h and M such that b(x, log(1+1/M))= ®(B(v, h)). Choose u €Il
such that ®(u)=x and choose k such that B(v, h)< B(u, logk). O

LEMMA 2. Suppose x € K*. Then 3 6>0 such that
yeK=x+0(x—yek

PrROOF. Let H=K—x. Then 0 € H? and so H N —H is closed, convex
and absorbs each point of H and —H. Since H is compact, convex,
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H N —H absorbs H [5, Corollary 10.2]. Thus 3 § >0 such that SH<= H N
—H< —H. Thus

vEK=>y—xeH=0y—x)e—H=>x+0x—y)eK O
If A is a normed linear space and €20 let B,={h € A:||h| Z¢}.

LEMMA 3. Suppose E is a normed linear space and G is a weak* closed
subspace of the dual space E*. Suppose x € E*, r20 and (x+B,)NG=g .
Then 3 fe E such that | fil=1, f(G)=0 and f(x)>r.

PrROOF. x+B, is weak* compact and G is weak* closed. Hence
3 fe E such that || f||=1, f(G)<e« and f(x+ B,)Z« for some «. Since G
is a subspace, «>0 and f(G)=0. Since | ff=1 we can find y € B, such
that f(y)>r—a. Then x—yex+B, so f(x—y)=« hence f(x)=a+
S>r. O

Now for the main theorem. We always think of K as embedded in the
Banach space 4(K)* with the weak* topology. The norm of A(K)*
provides a metric topology on K which we will refer to as the norm

topology.

THEOREM 1. Suppose A=K'3 . Then the following are equivalent.
(1) A=) for some part I1 of P(K).
(2) K is finite dimensional.

ProoF. (1)=>(2). Suppose (1) and suppose that K is metrizable. We
will show that, in this case, K is finite dimensional. Then we will reduce the
general case to this one.

We first show that K is norm separable. If x € Il then I1< LY(u) (via
Radon Nikodym), and the norm topology that Il gets from L(u) is the
same as the norm topology it gets as a subset of € (K)*. Indeed if g, h €
LY(u) then

sup f(g —h)ydu = ligdu — hdul|

FEC (K 1l =1

= sup ff(g — h)dp = llg — hl,,
1eLZi 1)l =1

where ||| denotes the variation norm in the Banach space .#(K) of
Radon measures on K. Since L'(u) is separable (K is metrizable), I is
norm separable in €(K)*. Since ® is the restriction to Z(K) of the natural,
norm-decreasing surjection ®:€(K)*—A(K)*, A=®(Il) is norm separ-
able. Since A=K is norm dense in K, K is norm separable.

Now we show that K is norm compact. Since K is norm complete it will
be enough to find for any £>0 a finite set F< A(K)* such that K< F4-B,,.
So suppose ¢>0. Choose u, M, k and x from Lemma | and ¢ from
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Lemma 2 so that 6(1+1/M)=1. Since K is norm separable, we can cover
K with countably many balls of norm radius r=¢d6/2M. A finite number
of these balls contains all but at most y=¢6/2k M of the measure u. Let P
be a finite dimensional subspace of 4(K)* containing x and the centres of
these finitely many balls.

We claim that K<P+B,. Indeed suppose y € K but y ¢ P+ B,. Let
z=x+(0/M)(y—x). Then zeK and d(x,z)<log(l14+1/M). Indeed
X+M(x—z)=x+0(x—y) which is in K by Lemma 2, and z+ M(z—x)=
x+06(1+1/M)(y—x) which is in K since é(1+1/M)=1. So by Lemma |
we can choose v € B(u, log k) such that z=®(»). An easy computation
shows that dv=g du with 1/k<g=<k. Also, since P is weak* closed and
Y ¢ P+ B, we can find fe A(K) such that ||f]|=1, f(P)=0 and f(y)>e¢
(Lemma 3). Then

f(z) = (O/M)f(y) > d/M, and
i =[rean=] fequ+| seau
< rfedu+ 101K w11 > D S 7t ky = et/

(where u({|f|>r)=y since |f(w)|>r=>w ¢ P+B,). Since fe A(K) and
®(v)=z we must have »(f)=f(z), a contradiction.

So K< P+ B,. Hence K< [(K+ B,)NP]+B,. Now (K+B,) NP is finite
dimensional and norm bounded, so relatively norm compact, and we
can choose a finite set F< A(K)* so that F+4 B, contains it. Hence
K< F+B,,.

So K is norm compact. We deduce that the unit ball B, of A(K)* is
norm compact. Indeed it follows from the Hahn Banach Theorem that
every element of 4(K)* is given by a Radon measure on K. Use the Hahn
decomposition of this measure and the fact that any probability measure
on K has a barycentre in K to deduce that, for any A € B,, there exists
k,he Kand 0=, =1 such that

MO =af(k) — Bf(h) (fe AK)).

Thus B, is contained in a continuous image of KX Kx [0, 1]x [0, 1], and
is norm compact. It follows that 4(K)* is finite dimensional, and so is K.

Now drop the metrizability assumption; suppose K has (1) but is not
finite dimensional. Choose a countably infinite, linearly independent
sequence {f,}<A(K) such that ||f,[|=27". Define the map ¥ from K
into /2 by ¥(x),=f,(x). ¥ is affine and continuous, hence maps K onto
a compact convex subset A of /2. From Lemma 4 below H:=¥'(K%)# 2.
Since every x € K¢ has a representing measure in I1, every # € H* has a



1972] REPRESENTING MEASURES FOR INNER PARTS 541

representing measure in Il oW =1={u o ¥-1: 4 € II}. Since 11 is a part of
P(K), Tl W1 is contained in a part of 2(H) (from linearity of the
map u—u o¥1). So H has property (1) and since it is metrizable it is,
by the first part of the proof, finite dimensional. This contradicts the
linear independence of {f,}.

LEMMA 4. Suppose K and H are convex sets and K'# . Suppose
Y':K—H is affine and onto. Then H:="Y'(K').

Proor. Clearly ¥(K9)< H¢. Assume x € H‘. Choose z' € K’ and let
z=Y(z"). Since x € H!, x=/’z4 (1 —2)w for some w € H, 0<A< 1. Choose
w’ € K such that ¥'(w)=w. Then if x'=21z"+(1 —2A)»n’ we have ¥'(x')=x
and x’ € K¢since z' € K and 0< i< 1. So x e ¥(K?).

(2)=-(1). Suppose K is of dimension m and is in fact contained in R™.
If x € K* then K contains an open line segment containing x in the direc-
tion of each coordinate axis. From the convexity of K we deduce that K
and hence K* contains an open ball in R" containing x. Hence K¢ is open
in R™.

Choose {z,}, a countable dense subset of E(K). Let u=>(d(z,)/29)
(6(z)=delta measure at z). We will show K‘< ®(I1) where II is the part
of P(K) containing u. Choose y € K. Let ®(u)=x € K. Since y € K* we
can choose we K‘ and 1>a>0 so y=ax+(l—a)n. Choose ¢>0 so,
VgeRm,

lg—wll < e=ge K (|I-] is Euclidean norm in R™).

Choose n so {z,,z,,--,z,} is an ¢-net for E(K). We claim that w €
co{zy, 25, , z,}. If not 3y € R™, |ly||=1 such that (y, w)>(y, z,) for
1<i=<n. Now w+¢y € K. Thus 3 z € E(K) so that

.Dz@wt+e)=@w+e>@.z)+e, 1=isn

It follows that |z—z,| >¢ if 1 Zi=n. This contradicts the choice of ».

So wecof{z;, z5. - - -, z,}. This provides a measure » € Z(K) such that
®(v)=w and v=2"u. Clearly the probability measure au+(I—a)
represents y. It is in IT since «>0 and au=<ou+ (1 —a)r=(a+2")u.

ReEMARKs. (1) Tam grateful to H. S. Bear for his interest in this work.
He pointed out to me that my original proof of Theorem 1 was valid
only for metrizable K, and supplied the simple geometric proof of Lemma
4. I am also grateful to the referee for indicating several places where a
few more details would substantially improve the exposition.

(2) A stronger version of Lemma 1 follows immediately from Bauer’s
open mapping theorem (to appear in Equationes Mathematicae, see
[3, Theorems 5-13]).
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(3) There remains the problem for general parts: Find a condition
(geometric or topological) on a part A of K equivalent to (1).
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