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Abstract. In a previous paper the first author proved

£/"([(,edb)^Ef{Mbt), where e is a Brownian functional ¿M in

absolute value and f is a convex function such that the right side

is finite. We now prove a discrete analog of this inequality in which

the integral is replaced by a martingale transform: EfÇyJ d,:yk)^

Ef(M Tï/i). (The yfs are independent variables with mean zero,

j^-d¡y¡ + - • ■+d1y, is a martingale, and 0^d,^M.) We further

show that these inequalities are false if / or n is a stopping time,

or if dj>0.

1. Introduction. Let bt be Brownian motion, and £■(/, b) a non-

anticipating function of bt (see [3] for details). Assume also |e(r, b)\^M.

In [5] the first author, using a PDE argument, proved the inequality

(M)     £(/(re(s'b) db)) - E(f(Mbt))

for any convex function/(x) satisfying a certain natural growth condition

(see (4.3) below). In this paper, we prove the corresponding result for

independent random variables with zero means, which, in contrast to

(1.1), requires the analog of e^.0. This result is of interest in itself, and

can be used to give an alternative proof of (1.1). We also give a third

independent proof of (1.1), due to the second author, which consists of

only six lines.

Finally, we show that the natural generalizations of (1.1) and its dis-

crete analog—i.e. if dk^0 or t and «arestopping times (see (2.2))—are false.

Under these more general conditions, the situation becomes more com-

plicated; see [1] for the inequalities that do hold. Inequalities similar to

(2.2) (but for the case/(.v)=|A'|) are contained in a paper of Millar [4].

See also [2] for another inequality similar to (2.2).

2. The main result. Letyx, y2, ■ ■ •, y„ be independent random variables

with Eiyk) = 0, and let {&k (05=^^«) be an increasing set of cr-algebras of
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events such that, for each k, (\)-$iyx,y.,, • •• ,yk)^-^kandin){yk+x, ■ ■ ■ ,yn}

is independent of -H#k. Finally, let/(x) be a convex function satisfying

£(/(±M¿|vV < oo

and let dk be random variables such that each dk is ¿i^-measurable. Then

Theorem 1.    Ifyk, dk and fix) are as above and

(2.1) 0<dk^M

then

(2-2) E (/(¿ dtyt) ) Ú E (/(m ¿ y¿} ).

Remark. Fhe hypotheses of the theorem can be weakened slightly.

For example, if theyk are symmetrically distributed, (2.1) can be replaced

by

(2.3) \dk\ < M.

In general, the theorem holds with (2.3) instead of (2.1) provided

(2-4) £(/(x - 6yk)) < £(/(x + 6yk))

for l^k<n and all x, 0>O. Millar [4] proved (2.2) for the case/(x)=|x|

and symmetric yk. He also proved (for/(x)=|x|) that even in the asym-

metric case, with \dk\^M, (2.2) holds if a multiplicative constant 2 is

placed on the right side.

Examples.    (1) In particular, if 0_¿4_A/,

(2.5) ¿((Î^J) ¿M*lE(ßytJ)

for integers /. This inequality is of course sharp if dk=M. This inequality

is very useful for estimating expressions of this type; the right-hand side

can now be expanded as in the proof of the Khinchin inequalities for

Rademacher functions. If it had been available, it would have allowed an

elementary proof of Theorem 1 in [6].

(2) Consider the following "practical" situation. Suppose a gambler,

playing a fair roulette wheel, bets dk on the kth spin of the wheel according

to any strategy (randomized or not) which cannot foretell the future. Let

T„ be his net winnings up to time n. and let S„ be what he would have won

if he had bet a constant amount M^maxkdk (e.g. the house limit) each

time. Then, for any convex function/(x),

£(/(£„)) = E(J\Sn)).
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3. Proofs and counterexamples. The proof of Theorem 1 depends on

the following lemma.

Lemma. Let Y be a random variable with mean zero, and fix) any

convex function for which the expectations below exist. Then, for every x,

(3.1) Eifix + aY))< Eifix + b Y)),       0 < a < b.

Proof.    Without loss of generality assume .y=0 and/(0)=0. Then,

if t=ajb,

fiaY)<i\- 0/(0) + tfib Y) = tfib Y),

but 0=fiO)=fibEY)^Efib Y), so

Ej\a Y) ̂  tEfib Y) ̂  Ef(b Y).

(This proof of the Lemma, which is an improvement of our original

proof, was suggested by Don Burkholder and the referee. The Lemma is

similar to Lemma 1.1 of [4].)

Proof of the Theorem. By induction (2.2) holds for l^k<n—1.

Then

£(/(î dkyk"j)=E(E(fÇïdkyk + dny^   ¡2n_^)

<> E(E(fÇfdkyk + M.v„)    £9^

= e(e(/(§ dkyk + My^    >•„) ) ^ £(j(m ¿ y*))

by the Lemma and the induction hypothesis.

Counterexamples. Equation (2.2) cannot hold in general even if

n=\ and dx=-\. For, if E(y2)< oo and £(/(-j))<£(/(;0) for all

convex fix) (e.g. /(.v) = sin Bx+B2x2) then y must be symmetrically

distributed. More dramatically, assumey^y2c^. 1 —z, where F(z>?) = e_i,

and

(3.2) fix) = (ex - e2)+       ÍA+ = ma\{A, 0}).

Then Eifiy\—y2))=oo but Eifiy1+yi))=0. There is no escape even if

fix) is even, since

E((yi - y2f) ^ EHy, + y2Y)

fory\ç^.y2ç^.y holds iff £(j3)£(;'5)>0, for which it is easy to find counter-

examples.
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Secondly, assume 5(j¿ = ±1)=2, sk=y1+y2+- • -+yk, s0=0, and set

T = min{«:|i„|=2}, and dk=\ (if sk_x^0) with 4=0 (ifc_i>0). Then, with

probability 1/64, sx, ■ ■ ■ , s6=l,0, 1,0, 1,2 and r=6, 2[dkyk=3. If

fix) is as in (3.2), we obtain a counterexample of (2.2) for r in place of n.

(The choice/(x)=x12 also gives a counterexample.)

This example can also be adapted to (1.1). Define stopping times ßn

by setting ß0=0 and, for /?_0,

ß„+1 = min{s + ß„:\bis + ß„) - b(ß„)\} = I.

If eis, ¿>)=1 for ß„<s<ß„+x when bißn)<0 and eis,b) = 0 for the same

range if ¿>(/?„)>0, then eis, b) is nonanticipating with respect to bit). If

T=min{/S„:|¿(/S„)|=2}, then (1.1) is false with t in place of/, even with

max,,;, \bt\ in place of bT.

We are indebted to Don Burkholder for the idea behind the last two

counterexamples.

4. Other Proofs of (1.1). By a theorem of McKean [3, p. 29], given

any nonanticipating eis, b) there exists another Brownian motion Cit)

such that

(4.1 ) [eis, b) dbs = C(/S),       ß = [eis, bf ds
Jo Jo

and such that ß is a stopping time for the Brownian motion Cit). Evidently

ß^M2t; thus {0, Ciß), CiM2t)} is a martingale by the optional stopping

theorem. Hence by Jensen's inequality

/(O) = Eifidß))) = EifidM2t))) = EifiMbJ)

since CiM2t)^MCit), and hence (1.1) follows.

Corollary.    Inequality (1.1) also holds even if only

ÍI j   eis, b)2 dsi ' < M.

We can also obtain (1.1) from (2.2). For all TV and k^Nt—l, set

(4.2)        dk = N ['      eip, b) dp,       yk = b i^^1) - b (-),
J(k-u/x \   n    i \n]

and let eA-(s, b) be step functions defined by e,v(i, b)=dk for k^Ns<k+1 ;

e\v(5, ¿>)=0 for 5_[7Vf]/A/. The variables {¿4, jj satisfy the hypotheses of

§2 and (2.3), (2.4); hence,

'{['■-■■"'■))sElf I     c.v tlb.)    ä £(«M6((«|]/N))) S E(f(Mb,))
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by the Lemma. On the other hand, fj, (e.\—e)2 ds-+0 a.s. by construction

and hence j¡0ey dbs—>- ("Ó £>dbs in probability (see [3]). Finally, since, for

all positive B,

£ÍexpÍ0    eN dbs - IB2 j e% ds\\ =1,

Pi('0exdbs>X)^expi-X2l2M2t), unif. in N. Hence (1.1) follows by the

Vitali Convergence Theorem for any convex/(.v) satisfying

(4.3) f(x) = 0(exp(|x|d)),    some d < 2.

Remark. This last argument shows that (if e^O) inequality (1.1) holds

for any martingale b, with independent increments with an appropriate

modification of (4.3). (If bt is symmetric e need not be ^0.) The special

case/(.v) = |.v|, with a multiplicative constant 2 on the right side, appears

in [4]. One example would be b,=pt — Ct, where pt is a Poisson process

with rate C.
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