UNIVERSAL REGRESSIVE ISOLS

JOSEPH BARBACK

ABSTRACT. E. Ellentuck introduced universal isols in Math. Z. 98 (1967), 1–8, to show how counterexamples in the arithmetic of the isols may be obtained in a uniform manner. Also Ellentuck was the first to prove, in unpublished notes, that there will be regressive isols that are universal. The present paper contains a relatively short proof that every infinite multiple-free regressive isol will be universal.

- 1. **Preliminaries and basic ideas.** We shall assume that the reader is familiar with the concepts and main results cited in the papers [1], [2] and [4]. We adopt the notation of [2]. The principal result proved in [2] is the following lemma.
- LEMMA 1. Let α be a nonempty recursive set and let f be any increasing recursive function whose range is α . Let α_R denote the set of regressive isols that belong to the extension of α to the isols, and let D_f denote the canonical extension of f to the isols. Then $\alpha_R = D_f(\Lambda_R)$.

The basic idea for the proof of the main theorem in this paper arises from observing an elementary yet useful way of characterizing α and α_R for particular recursive sets α . This way is given in the following lemma and theorem. The techniques employed in the proof of the theorem are similar to those in [1] and [2].

- LEMMA 2. Let α be an infinite recursive set of numbers and let f denote the principal function of α . Then there will be functions g and h such that
 - (1) g and h are each increasing and recursive,
 - (2) g ranges over an infinite set, and
- (3) $f(x)=2 \cdot g(x)+h(x)$, for each number x, if and only if the complement of α is also an infinite set.

PROOF. Assume first that there are functions g and h having the properties (1)-(3). Let us also assume that the complement of α is a finite set. Then there would be a number k such that

$$f(k) = y$$
, $f(k+1) = y+1$, $f(k+2) = y+2$, ...

Received by the editors April 17, 1972.

AMS (MOS) subject classifications (1970). Primary 02F40.

Key words and phrases. Universal isol, regressive isol, multiple-free isol.

Since both g and h are increasing functions, it would then follow from property (3), that

$$g(k + 1) = g(k + 2) = g(k + 3) = \cdots$$

Therefore g would have a finite range, and this would contradict property (2). Therefore it must be that the complement of α is infinite.

Let us assume now that both α and its complement are infinite sets. Define functions g and h in the following way. Let g(0)=0 and let h(0)=f(0). Assume that the values for g and h have been defined for values up to and including the number y. To define the functional values at y+1, we consider two cases. Let a=f(y) and let b=f(y+1).

Case 1. b=a+1. Define

$$g(y + 1) = g(y)$$
, and $h(y + 1) = 1 + h(y)$.

Case 2. b=a+u+2 with $u \ge 0$. Define

$$g(y + 1) = 1 + g(y)$$
, and $h(y + 1) = u + h(y)$.

Because α is an infinite recursive set and f is its principal function, f will be a strictly increasing recursive function. Combining this property with the definitions above, it is easy to see that properties (1) and (3) will be true. Also, because the complement of α is an infinite set, Case 2 above will occur infinitely often, and this will mean that g will range over an infinite set. This gives property (2), and also proves the lemma.

THEOREM. Let α be an infinite recursive set and let Y be an infinite regressive isol belonging to α_R . If the complement of α is also an infinite set, then there will be regressive isols S and T with S infinite and Y=2S+T.

PROOF. Let f denote the recursive principal function of α . Assume that the complement of α is an infinite set and let g and h be functions chosen to have the properties as in Lemma 2. By Lemma 1 we know that $\alpha_R = D_f(\Lambda_R)$. Also, by combining property (3) in Lemma 2 with the well-known metatheorem of A. Nerode for such statements, it follows that $D_f(C) = 2D_g(C) + D_h(C)$, for all isols C. Because Y is in α_R then $Y = D_f(U)$ for some regressive isol U. Therefore, also $Y = D_f(U) = 2D_g(U) + D_h(U)$.

Since Y is infinite U will be also, and because g and h are each increasing and recursive functions $D_g(U)$ and $D_h(U)$ will each be regressive isols. Finally, we would like to note that $D_g(U)$ will be an infinite isol. This property may be verified in the following way. Consider the value of $D_g(U)$ expressed as an infinite series of isols, as given in [1, Proposition 2], and observe that in this series the associated e-difference function of g will be positive infinitely often since the range of g is an infinite set. Combining this form of an infinite series representation of $D_g(U)$ with the property that

U is an infinite regressive isol, it is easy to verify that the value of $D_g(U)$ will be infinite. If we set $S = D_g(U)$ and $T = D_h(U)$ then the desired result of the theorem will follow.

2. Universal and multiple-free isols. In view of [5, p. 4], a universal regressive isol may be defined in the following way: A regressive isol U is universal if, for every recursive set α , $U \in \alpha_R$ implies the complement of α is a finite set. An infinite isol Y is called multiple-free, if for every isol B, $2B \leq Y$ implies B is a finite isol. Multiple-free isols were introduced and studied in [4]. An example of an infinite regressive isol that is multiple-free appears in [3]. We can obtain directly from the theorem in §1 the following result, and it is the main theorem of the paper.

THEOREM. Every infinite multiple-free regressive isol is universal.

M. Hassett has shown that there will be universal regressive isols that are not multiple-free (not yet published). From this result we see that the converse of the previous theorem will not be true.

REFERENCES

- 1. J. Barback, Recursive functions and regressive isols, Math. Scand. 15 (1964), 29-42. MR 31 #1189.
- 2. —, On recursive sets and regressive isols, Michigan Math. J. 15 (1968), 27-32. MR 37 #64.
- 3. ——, Two notes on recursive functions and regressive isols, Trans. Amer. Math. Soc. 144 (1969), 77-94. MR 41 #6691.
- 4. J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. California Publ. Math. 3 (1960), 67-213. MR 22 #7938.
 - 5. E. Ellentuck, *Universal isols*, Math. Z. 98 (1967), 1-8. MR 35 #5315.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY COLLEGE OF NEW YORK, BUFFALO, NEW YORK 14222