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UNIVERSAL REGRESSIVE ISOLS

JOSEPH  BARBACK

Abstract. E. Ellentuck introduced universal isols in Math. Z.

98 (1967), 1-8, to show how counterexamples in the arithmetic of

the isols may be obtained in a uniform manner. Also Ellentuck was

the first to prove, in unpublished notes, that there will be regressive

isols that are universal. The present paper contains a relatively

short proof that every infinite multiple-free regressive isol will be

universal.

1. Preliminaries and basic ideas. We shall assume that the reader is

familiar with the concepts and main results cited in the papers [1], [2] and

[4]. We adopt the notation of [2]. The principal result proved in [2] is the

following lemma.

Lemma 1. Let en be a nonempty recursive set and let f be any increasing

recursive function whose range is a. Let y.H denote the set of regressive isols

that belong to the extension of a. to the isols, and let Df denote the canonical

extension off to the isols. Then a1{= DfiA1{).

The basic idea for the proof of the main theorem in this paper arises

from observing an elementary yet useful way of characterizing a and aA>

for particular recursive sets a. This way is given in the following lemma and

theorem. The techniques employed in the proof of the theorem are similar

to those in [1] and [2].

Lemma 2.    Let a. be an infinite recursive set of numbers and let f denote the

principal function of a. Then there will be functions g and h such that

il) g and h are each increasing and recursive,

(2) g ranges over an infinite set, and

(3) fix)=2 ■ gix)+hix),for each number x, if and only if the comple-

ment of a. is also an infinite set.

Proof. Assume first that there are functions g and h having the prop-

erties (l)-(3). Let us also assume that the complement of a is a finite set.

Then there would be a number k such that

fik) = y,   fik + 1) = y + 1,   fik + 2) = y + 2, • • •.
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Since both g and // are increasing functions, it would then follow from

property (3), that

gik +l)=gik + 2)=gik + 3) = ---.

Therefore g would have a finite range, and this would contradict property

(2). Therefore it must be that the complement of a is infinite.

Let us assume now that both a and its complement are infinite sets.

Define functions g and h in the following way. Let g(0)=0 and let A(0) =

/(0). Assume that the values for g and h have been defined for values up

to and including the number/. To define the functional values aty+l, we

consider two cases. Let a=fiy) and let b=fiy+\).

Case 1.    b = a+\. Define

giy + 1) = giy),   and    hiy + I) = 1 + hiy).

Case 2.    b=a+u+2 with t/^0. Define

g(y +0=1+ giy),   and   hiy + 1) = u + hiy).

Because a is an infinite recursive set and/is its principal function,/will

be a strictly increasing recursive function. Combining this property with

the definitions above, it is easy to see that properties (1) and (3) will be

true. Also, because the complement of a is an infinite set, Case 2 above will

occur infinitely often, and this will mean that g will range over an infinite

set. This gives property (2), and also proves the lemma.

Theorem. Let x be an infinite recursive set and let Y be an infinite re-

gressive isol belonging to xR. If the complement of x is also an infinite set,

then there will be regressive isols S and T with S infinite and Y=2S+ T.

Proof. Let/denote the recursive principal function of a. Assume that

the complement of a is an infinite set and let g and h be functions chosen to

have the properties as in Lemma 2. By Lemma 1 we know that a/e= £,/(A/i).

Also, by combining property (3) in Lemma 2 with the well-known meta-

theorem of A. Nerode for such statements, it follows that DfiC) =

2DaiC)+DhiC), for all isols C. Because Y is in xR then Y-DfiU) for some

regressive isol U. Therefore, also Y=DfiU)=2DgiU) + DhiU).

Since Y is infinite U will be also, and because g and h are each increasing

and recursive functions DgiU) and £>,,(£/) will each be regressive isols.

Finally, we would like to note that DçiU) will be an infinite isol. This

property may be verified in the following way. Consider the value of D0iU)

expressed as an infinite series of isols, as given in [1, Proposition 2], and

observe that in this series the associated e-difference function of g will be

positive infinitely often since the range of g is an infinite set. Combining

this form of an infinite series representation of DgiU) with the property that
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U is an infinite regressive isol, it is easy to verify that the value of DgiU)

will be infinite. If we set S=DgiU) and T= DhiU) then the desired result

of the theorem will follow.

2. Universal and multiple-free isols. In view of [5, p. 4], a universal

regressive isol may be defined in the following way: A regressive isol U is

universal if, for every recursive set a, U e a.R implies the complement of a

is a finite set. An infinite isol Fis called multiple-free, if for every isol B,

2B^ Y implies B is a finite isol. Multiple-free isols were introduced and

studied in [4]. An example of an infinite regressive isol that is multiple-free

appears in [3]. We can obtain directly from the theorem in §1 the following

result, and it is the main theorem of the paper.

Theorem.    Every infinite multiple-free regressive isol is universal.

M. Hassett has shown that there will be universal regressive isols that

are not multiple-free (not yet published). From this result we see that the

converse of the previous theorem will not be true.
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