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AUTOMORPHISMS  AND  DERIVATIONS

OF  INCIDENCE   ALGEBRAS

KENNETH   BACLAWSK11

Abstract. This paper studies the derivations and automor-

phisms of the incidence algebra of a locally finite partially ordered

set. Two subspaces are shown to span the space of derivations:

the space of inner derivations and the space of derivations associ-

ated with the additive functions. An analogous result is shown for

the group of automorphisms. A number of dimension calculations

are also made.

1. Preliminaries. In the study of additive and multiplicative functions

on the segments of a (partially) ordered set, it is natural to consider

derivations and automorphisms, respectively, of the incidence algebra.

In §2, we study the derivations. In §3, we give the analogous results for

automorphisms. For a more complete description of the notation used

see [1].

Let P be a locally finite (partially) ordered set, i.e. for which every

segment [x, y]=*{z\x£z£y} is finite. The incidence algebra I(P) of P

over a field K is defined as the AT-algebra of all functions from segments of

P into K under the product

f*g(x,y) =   2 f(x,z)g(z,y),

where we write f(x,y) for f([x,y]). The Schur (pointwise) product,

fg(x, y)=f(x, y)g(x, y), will also be used. The elements <5, ex and ôxv of

I(P) are defined in [1]. We also assume that I(P) is given the standard

topology induced by the discrete topology on K as defined in [1]. With

this topology, I(P) is a topological algebra with respect to either product.
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2. Derivations. Let r¿{I{P)) be the space of /¿-derivations of I(P), i.e.

the space of /C-homomorphisms D : I{Py-+I{P) satisfying

D(f*g)=f*D(g) + D(f)*g,

for all/, g e I(P). For any/e I(P), the inner derivation of I(P) with respect

to/is the derivation df given by df(g)=f*g—g *f. Let </.©(/(.?)) denote

the space of all inner derivations of I(P).

Theorem 1. Let P be a locally finite ordered set having c connected

components: P1, ■■ ■ ,PC. Then there is a short exact sequence of K-homo-

morphisms

j d
0 —>KC—+ I(P) —► JcJ\l{P)) —► 0.

We define j:KC~*I(P) byy(a1; • • •, ac)=g, where

g{x,y) = ai,   if x=yeP{,

= 0,    ifx&y.

The AT-homomorphism d:I{P)-+J&i{I{P)) is, of course, given by d(f) = df.

Proof. We clearly need only check the result for c=l, i.e. for P

connected. In this case, d is obviously a AT-epimorphism of I(P) onto

J@{I(P)) whose kernel is the center of I(P). Thus lm(j)=KôçKtT(d).

Let /e Ker(úT). Then for x<y, f(x,y)ôxv=ex */* ey=ex * ey */=0.

Hence/(;c, j)=0 whenx<y.Nowletx<j.Then/"(x, x)ôxy = ôxx */* ôxv =

&XX * K *f=àxy *f=àxy * àyy *f=ôxv *f* ôvv=f(y,y)ôxy. Therefore, if
x^y, f(x, x)=f(y, y). Since P was assumed to be connected, we have

f(x, x)=f(y,y) for all x, y e P. Thus/e Ko. The result now follows.

We call an element a of I(P) additive if, for x^y^z,

a(x, z) = o(x,y) + a(y, z).

For any additive a e I(P), there is a naturally associated derivation La de-

fined by La(f) = af. Let J?3(I(P)) denote the space of all such derivations.

Theorem 2.    IfP is a locally finite ordered set, then

®(/(jP» = J2{i(p)) + sesf(i(p)).

Proof. Let Ds9(I{P)). Set g=J.^vD(ev)*ep. Equivalently,

g(x, y)=D(ev)(x, y) for x^y in P; hence g is a well-defined element of

I(P).
Let r, seP. Then Z>(er * es) * e=eT * D(es) * es+D(er) * es. Therefore

eT * D(es) * e, = — D(er) * es,    if r jí s,

= 0, if r = j.
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Thus for r e P we have

(D - d„)(er) = D(er) - g * er + er * g

= D(er) - 2 D{e,) * es * er + 2 er * D(eJ * es

s€P sel'

= D(er) - D(er) * er - 2 D(er) * e,

= D(er)- D(eT)*er- D(er) * fce\

= D(er) - D(er) * er - D(er) * (Ô - er) = 0.

Since I(P) is a topological algebra and g is well-defined, all the above sums

converge.

Now if x^y in P, then ex * I(P) * ey=KôXy. Applying the derivation

D0=D—d9 to this equation yields D0(óxy) e Kèxy. Thus there exists some

a e I(P) for which D0(ôxy)=aôxy, for all x^y in P. It is easy to verify that

a is additive.

To complete the proof, we must show that D0=La. This is not trivial

when P is infinite, since there is no a priori reason to expect Z>0 to commute

with infinite sums. Let/e I(P). Then, for x^y in P,

D0(ex *f* eu) = D0(f(x,y)ôxy) = f(x,y)a(x,y)ôxy,

and

D0(ex *f* ey) = ex* D0(f) * <?„ = D0(f){x,y)oxy.

Thus D0(f) = af. The theorem now follows.

Corollary. Every derivation of an incidence algebra with the standard

topology is continuous.

Indeed, by Theorem 2, if I(P) is given any topology such that the three

operations *, + and • (Schur product) are continuous, then every

derivation on I(P) is continuous.

In general, the decomposition D=dg + L!, of Theorem 2 is not unique.

However, the elements of ■f&(l(P))C\£¿'!2{I(P)) have an especially

simple form. Let dQ=Lc. Now in the standard topology of I(P), the sum

2r<s g(r' s)àrs converges to g. Thus, for p^q in P,

v{p, q) àvq = La(oPQ) = da{dVQ) = g * óp„ - Ôpll* g

= 2 S(r' SXÓ™ * K - àm * ôrs)
rés

= 2 sO, p)àn - 2 z(a> S)V + (g(p> p) - g(<7, q))àm-
r<p Q< s



354 KENNETH   BACLAWSKI [December

Thus g(p,q)=0 for p<q, and o(p,q)=g(p,p)—g(q,q) for p^q. Con-

versely, given any g€l(P) such that g(p,q)=0 for p<q, then a(p,q) —

g(p,p)—g(q,q) defines an additive element of I{P) for which L„—d,r If

P has a 0 or 1, it is easy to verify that every additive element a of I(P) has

this form. Thus, in this case, every derivation of/(P) is an inner derivation.

If P is finite, it is clear that the dimension of ■fQ(I(P))<^^"y,(I(P)) is

q—c. where q is the cardinality of P and c is the number of connected

components of P. We have therefore shown one part of the following

theorem. The remaining parts use the notation employed in Stanley [4]

and are proved in a manner similar to that of the results there [4, Theorem

2].

Theorem 3.    If P is a finite ordered set, then

dimA. J9(I(P)) n &2il(P)) = q - c,

dimA- y3(l(P)) = p - t,

dimA- -S?.(/(/(P))/./j2(/(P)) n ^fS(/(P)) = r - t,

dimA- .(?(/(P)) = dim7C ./^(/(P)) + ;•-/ = dim7C /(P) - c + r - t.

The last equality is a consequence of Theorem 1.

3. Automorphisms. Let K* and I(P)* denote the multiplicative sub-

groups of K and I(P) respectively. The group of all /¿-automorphisms of

/(P) is denoted si/(I(P)). For fe l(P)*, the inner automorphism of/(P)

with respect to / is given by if(g)=f * g *f~1. The group of all inner

automorphisms of I(P) is a normal subgroup of g/(/(P)) which we denote

by-/(/(P)). The following theorem is proved in precisely the same manner

as Theorem 1.

Theorem 4. Let P be a locally finite ordered set having c connected

components: Pl, • • • , Pc. Then there is a short exact sequence of homo-

morphisms

1 —*■ (K*)c -^U HP)* -!»- •/(/(/»))—» I.

The homomorphism j:(K*)'-+l(P)* is given by the restriction of the

map j:Kc^I(P) in Theorem I. The homomorphism i:I(P)*-*J(I(P)) is

given by i(f)=ir
An element v of /(P) is multiplicative if, for x^y¿z,

v(x, z) = v(x.y)v(y, z) e K*.

In particular, v e /(P)*. For any multiplicative element v, there is an

automorphism Lv of /(/>) defined by Ly(f) = vf Let -S?(/(P)) denote the

group of all such automorphisms.
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Let J^(P) denote the automorphism group of P. Given a e -<&(P), we

can associate an automorphism (also denoted a) of I(P) defined by

oL(f)(x,y)=f(oLx, ay), for all/e I(P) and x<y in P.

Theorem 5. IfP is a locally finite ordered set, then s/(I(P)) is generated

by f(l(P)), y(I(P)) and jtf(P) in the sense that if A e s/{I(P)), then there

are ifeJ(l(P)), L, e ^(I(P)) and a e ,s/(P) such that A = ifc Lv ° a. In

general, a is unique, but if and Lv need not be.

Proof. The proof follows Stanley's Theorem 2 [4], where the result

is proved in the finite case.

Let A e ¿/(I(P)). Since {ex\x eP} is a maximal set of primitive orthog-

onal idempotents of /(/>), the same is true of {A(ex)\x eP}. By Theorem 1

of [4], there is a unique a e s/(P) such that for all x e P, (A o a-i)(í¡r)_

ex £J={ge I(P)\g(y, y)=0 for all y e P). If i, e ./(/(P)) and Lv e i?(/(P)),

then

(it ° Lv)(g)(x, x) = g(x, x),

for all g e I(P) and x e P. It therefore follows that in any decomposition

A = if ° Lv o a, a is unique.

Set/=yieí> (A ° a-1)^) * ex. Then /is an element of I(P)* for which

f * ex *f~l = (A ° a-1)(e¡c), for all xe?. Therefore, /l0=/71 ° /4 o a_1 fixes

all the ev Since ex* I(P) * ey=Kôxv, A0(ôxv) e Kôxy. Let v e/(P) be defined

by v(x, y) = A0(ôxy)(x, y). It is easy to check that v is multiplicative.

It remains to check that A0=LV. Let h e/(P) and x^y. Then, as in

Theorem 2,

A0(ex * h *ey) = ^0(A(x, y)ôxy) = A(jc, j>(x, j).),.,,,

and

A0(ex * h * <?„) = ^ * /f0(A) * <?„ = A0(h){x,y)hxy.

Hence A0(h) = vh, and so A0=LV. The theorem now follows.

It is trivial to check that the order of the factors in the decomposition

given by Theorem 5 is not the only possible one. For example, if Lv e

i?(/(P))and a e -s?/(P), then t = oc_1(v) is multiplicative andLv o a = a °Lr.

Corollary. Every automorphism of an incidence algebra with the

standard topology is. continuous.

Indeed, if/(P) is given any topology such that *, +, • and the elements

of ¿rf(P) are continuous, then every automorphism (as well as every

derivation) of I(P) is continuous. In general, even if P is finite and *,

+ , and • are continuous, it is possible for an element of ,f/(P) not to be

continuous.
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As in the case of derivations, the elements of-/(/(P))ni?(/(P)) have a

particularly simple form. Namely, Lv=if if and only if f(x, j)=0 for

x<y and v(x,y)=f(x, x)f(y,y)~1 for x^y. If P has a 0 or 1, every

multiplicativeelement has this form. In this case, .stf{I(P))j./(I(P))^stf(P).

The author is indebted to Professor Gian-Carlo Rota for several con-

versations on this subject.
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