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AN  INTERNAL  CHARACTERIZATION  OF  THE   PRIME
RADICAL  OF A  JORDAN ALGEBRA

CHESTER  TSA1

Abstract.   The prime radical of a Jordan algebra 31 is the set

of all very strongly nilpotent elements of 31.

Let 5Í be a quadratic Jordan algebra over a commutative, associative

ring with 1. (For basic definitions, see [2].) Then an ideal P of 51 is a

prime ideal of 51 if, whenever B and C are ideals of 51 and B Uc £ P,

then either /?£ P or C^P. The prime radical of 5Í is defined to be the

intersection of al! prime ideals of 51. The concepts of prime ideal and

prime radical of a linear Jordan algebra are discussed in [4]. One may

apply these concepts to quadratic Jordan algebras without additional

difficulty. (See [1].)

The treatment in [4] is incomplete as far as the internal structure of the

prime radical of a Jordan algebra is concerned. One can show, among

other things, that there exists a unique prime radical P(5f) of a Jordan

algebra 51, which is the intersection of all prime ideals of 51, and the prime

radical of the quotient algebra 5I/P(5I) is 0. Moreover, if the radical of 51

is zero then 51 can be represented as a subdirect sum of prime algebras.

However, very little was said about the prime radical itself besides that

every element of P(5I) is nilpotent, i.e., P(5f) is a nil ideal of 51.

For associative rings J. Lambek gives an internal characterization of

the prime radical P(R) of a ring R. He shows, in [3], that an element x

of R is in P(R) if and only if x is strongly nilpotent. In this paper we shall

show a similar characterization for the prime radical of Jordan algebras.

Let 51 be a Jordan algebra over O. If a e 51, then [a] denotes the principal

ideal of 51 generated by a. A sequence {x0, xlt x2, • • • , xn, • ■ •} of elements

of 51 will be called an w-sequence if xn+1 e / UXn and will be called an M-

sequence if xn+1 e [xn] U[Xn¡. An element x is called a strongly nilpotent

element if every «-sequence beginning with x0=x is ultimately zero and is

called very strongly nilpotent if every A/-sequence beginning with x0=x

is ultimately zero.
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Lemma 1.    Every m-sequence in 31 contains an M-subsequence.

Proof. Let S={x0,x1,x.,,---} be an w-sequence of 3Í. Then the

subsequence S'={x'0, x'i, x'2, ■ ■ • , x'n, ■ • •} where x'„=x2n is a sequence

of 31. Since 5 is an «-sequence for each u, there exists an element yn e3t

such that.v,lil=>'„ UXn. Thus for each«, we see x'„+1=x2n+?=y.in+i UXtn : =

(>2n+i Ux„ UyM) Ux„„ is an element of [x'„] Uix-j. Hence S' is an M-

sequence. We see easily:

Corollary. Every very strongly nilpotent element of 31 is a strongly

nilpotent element o/3I. Every strongly nilpotent element o/3l is a nilpotent

element.

Theorem 1. The prime radical P(3I) of 31 is the set of all very strongly

nilpotent elements in 31.

Proof. Let a be an element in 31 but not in P(3l). Then there exists a

prime ideal P of 31 which does not contain a. The set complement Pc of P

is a G;-system (see [4]) which contains a. Let a0=a and ax be a nonzero

element in [aQ] i/[„u] OPc and, inductively, for each integer « there exists

a nonzero element an_l in [a„] U^^ npc. Moreover, no member of the

infinite sequence 5={a0, a1( a.z, • • ■} can be zero so that a is not a very

strongly nilpotent element.

If a is not a very strongly nilpotent element, then there exists an infinite

sequence T={aa, alt a2, ■ ■ ■}, a0 = a, an+1 e [an] £/[„„], ok^0. Let P be a

maximal ideal with respect to the property that is disjoint from T (use

Zorn's lemma). If one shows that P is a prime ideal of 3( which misses a,

then a is not contained in the prime radical P(3t).

Let B and D be ideals of 31 not contained in P; then by the maximality

of P and the fact that both the ideals B+P and D + P properly contain P,

there exist a¡ in B+P and a¡ in D+P. For convenience, we let i^j, then

a3 e [a,] and [a,]S [a¡] so that aM G [a,] Ultt¿ S [a,] Uín¡] ç(D+P) U1¡+P £

D U¡¡ +P and aj+1 i P. Henee D UB $P, and P is a prime ideal of 3Í.

Corollary. If K is an ideal o/3í, then the prime radical of K consists

of the set of all elements ofil which are very strongly nilpotent mod K.

If R is an associative algebra over <t> and x is in R, then x is strongly

nilpotent if every sequence {x0, xt, x2, ■ ■ •}, such that a-„ = .y and xn+1=

x,,rnx„ for some rn in R, is ultimately zero. J. Lambek shows that the prime

radical of R is the set of strongly nilpotent elements of R.

It is well known that one may construct a quadratic Jordan algebra

P+ on P by defining the operator Ua :y->-aya, cf. [2]. If a is an element in

R (and so is in R+), we shall say a is strongly P-nilpotent if it is a strongly

nilpotent element in R. Similarly we shall say a is strongly (very strongly)

P+-nilpotent if it is a strongly (very strongly) nilpotent element in R+.
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Theorem 2. Let R be an associative algebra over <J> and a be an element

in R. Then the following statements are equivalent:

(1) a is strongly R-nilpotent;

(2) a is strongly R^-nilpotent;

(3) a is very strongly R+-nilpotent.

Proof. We shall only show (1) implies (3), for the equivalence of (1)

and (2) follows immediately from the definition. (3) implies (2) was shown

by Lemma 1 and its corollary.

Since the prime radical P(R) of R is the set of all strongly /?-nilpotent

elements as pointed out by Lambek and the prime radical P(R+) of R+

is the set of all very strongly Ä+-niIpotent elements in Theorem 1, we need

only to show P(P)sP(P+).

Let <3={K\K is an ideal of R contained in P(R+)}. Then, by Zorn's

lemma, there exists a maximal element B in this collection. We note that

B is an ideal of R and if K is an ideal of R such that K2^B, then if one

takes K as an ideal of R+, K UK ̂ K2^B^P(R+). So K^P(R+). Thus,

by the maximality of B, K*Z B. Therefore B is a semiprime ideal of R and

P(R)^BÇP(R+).

As a consequence of this argument we have a simple proof for a result

of Erickson and Montgomery, [1, Theorem 4].

Theorem 3 (Erickson and Montgomery). Let R be an associative

algebra over <D. Then the prime radical P(R) of R coincides with the prime

radical P(R+) of the Jordan algebra R+.

Proof. Both P(R) and P(R+) consist of exactly the set of all strongly

nilpotent elements of R (or R+).

We shall now consider an associative algebra R with an involution x-*x*.

Consider that the space S of *-symmetric elements is a quadratic Jordan

algebra. We have

Theorem 4. Let R be an associative algebra with involution and a be an

element in S, the space of symmetric elements. Then the following statements

are equivalent :

(1) a is a strongly nilpotent element in S;

(2) a is a very strongly nilpotent element in S;

(3) a is very strongly R^-nilpotent;

(4) a is strongly R-nilpotent.

We shall prove the following lemma first.

Lemma 2.   If a e S and aSa^ P(R), then a e P(R).

Proof. For any x,^ e R, a(x*ax)a e aSaÇ P(R) and a(xay+y*ax*)a e

aSa^P(R). Thus (axa)y(axa)=a(xay+y*ax*)axa—ay*(ax*axa) e P(R).
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Hence (axa)R(axa)çP(R) which yields axa e P(R) ÍotP(R) is a semiprime

ideal in R. Now axaeP(R) for all x e R yields that aRa^P(R) and so

a e P(R) by the same reason.

Proof of the theorem. We shall show (1) implies (4). If a is not

strongly .R-nilpotent, then, by [1], a $ P(R). Let a0=a, then, by Lemma 2,

a0Sa0^P(R). Thus there exists s0 s 5 such that a1=a0s0a0^P(R). If

an $ P(R) is obtained then there exists an element s„ in S so that an+1=

ansnan $ P(R) by the same argument. Hence one finds an m-sequence

{a0, au a2, ■ ■ •} in S which begins with a and never terminates at zero.

Therefore a is not a strongly nilpotent element in the Jordan algebra 5.

The proof of the theorem is essentially completed, for the implications

(4) implies (3); (3) implies (2) and (2) implies (1) follow from the definition

and Lemma 1 easily.

The following theorem of Erickson and Montgomery [1, Theorem 3]

can now be proven in a very simple manner.

Theorem 5 (Erickson and Montgomery). Let R be an associative

algebra with involution * and S be the set of ^-symmetric elements of R.

Then the prime radical P(S) of the Jordan algebra S is the intersection

P(S) = SnP(R) of S with the prime radical of P(R) of the associative

algebra R.

Proof.    Both consist of the set of strongly nilpotent elements of S.
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