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EXISTENCE THEOREMS FOR SUM AND
PRODUCT INTEGRALS

JON   C.   HELTON

Abstract.   Necessary and sufficient conditions on a function G

are determined for the integrals

[bHG,       fi (1 4- HG),        [b I HG - ¡HG I = 0

and

Ç   1 + HG - Yl (1 + HG)   = 0

to exist, where H and G are functions from RxR to R and H is

restricted by one or more of the limits H(p~,p), H(p',p~),

H(p,p^) and H(p^,p~). Furthermore, the conditions on G are

sufficient for the existence of these integrals when H and G have

their range in a normed complete ring N.

All integrals and definitions are of the subdivision-refinement type, and

functions are from R x R to R or to TV, where R represents the set of real

numbers and TV represents a ring which has a multiplicative identity

element denoted by 1 and has a norm |-| with respect to which TV is com-

plete and 111 = 1. Unless noted otherwise, functions are from RxR to R.

If {x,)o is a subdivision of [a, b], then the statement that 7 is a modified

refinement of {xQ)l means there exist sequences {yQ}x, {z,}i" and {LQ}X such

that xQ_x<yQ<zv<xQ, Lq is a subdivision of [ya, zj and J= \JX LQ. Further-

more, if £> = {x(7}o is a subdivision of [a, b], then D(I) = {[xQ_x, xc]}", and

if J is a modified refinement of D, then J(I) = \JX La(I). The statements

that G is bounded and G e OB° on [a, b] mean there exists a subdivision

D of [a, b] and a number 5 such that if J is a refinement of T> then

(1) |G(M)|<5forwG/(/). and

(2) IJ{I)\G\<B,
respectively. Further, G e AZ on [a, b] only if G is bounded on [a, b] and

if £>0 then there exists a subdivision D of [a, b] such that if 7is a modified

refinement of 7) then 7Jm |G|<£. The function G e OA° or OM° on
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[a, b] if and only if $ba G exists and $ba \G- J G\=0 or Yla (1+G) exists and

¡I |l+G-n(l+G)|=0, respectively.
The symbols H(p~,p), H(p,p+), H(p~,p~) and H(p+,p+) represent

lim^p- H(x,p), lim^p+ H(p, x), lim,.„_„- H(x,y) and lim^^ H(x, y),

respectively. If H is a bounded function on [a, b], then

(1) HeOL1 on [a, b] only if H(p-,p~)=H(p+, p+)=0 for each p in

[a, *>],

(2) H e OL2 on [a, b] only if //(/?-, p~) and H(p+,p+) exist for each />

in [a, Z>],

(3) HeOL3on [a,b]on\y if H(p-,p)=H(p,p+)=Oioieachpin[a, b],

(4) /7e OL* on [a, è] only if H(p~,p) and H(p,p+) exist for each/? in

[a, ¿], and
(5) H e OLu on [a, b] only if # e OUoOU on [a, ¿>].

Note that OL2i is the same as the set OL° studied by B. W. Helton [3,

p. 493].
In the following we show that the conditions in Theorem 2 are necessary

and sufficient conditions for functions from RxR to R; furthermore,

with the assistance of Theorem 1, a number of theorems, each of which

gives three equivalent conditions for a product HG of functions to belong

to OA° or OM°, are obtained. Whenever functions from R x R to N are

considered, in each theorem statement (3) implies each of statements (1)

and (2).

Theorem 1. If G is a function from RxR to N and G e OB° on [a, b],

then G e 0,4° on [a, b] if and only if G e OM° on [a, b] [2, Theorem 3.4,

p. 301].

Theorem 2. If H and G are functions from RxR to N such that

H 6 OL°, G e OA° and G e OB° on [a, b], then GH and HG e OA° and
OM° on [a, b] [3, Theorem 2, p. 494].

Lemma 3.1. If G $ OB° on [a, b], then there exists He OL13 such that

HG is nonnegative and HG £ OB° on [a,b].

Proof. Observe that the desired function can be constructed if there

exists p e [a, b] such that either G(x,p) as x->/»_ or G(p, x) as x—>■/>+ is

unbounded. Therefore, assume these bounds exist. There exists a sequence

{Dn}x  of subdivisions of [a, b] such that

(1) Dn+X is a refinement of Dn,

(2) if « e Dn(I), then u $ Dn+x(I), and

(3) IDnii)\G\>n2.
Let H be the function such that

(1) if u e Dn(I), then H(u)= 1/« if G(u)^0 and H(u)=-\jn if G(u)<0,

and

(2) if u $ Uf Dn(I), then H(u)=0.
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Thus, HeOL13 and HG is nonnegative. Furthermore, since G(x,p)

as x -*■ p~ and G(p, x) as x->p+ are bounded for each p e [a, b], it follows

that 77G yt OB°.

Lemma 3.2. If G $ OB° on [a, b], then there exists HeOL13 such that

HG $ OA° and HG i OM° on [a, b].

Proof. It follows from Lemma 3.1 that there exists a function 77 G OL13

such that HG is nonnegative and 77G <£ OB°. Hence, HG $ OA° and

77G i OM°.

Theorem 3.   If G is a function, then the following are equivalent:

(1) if He OL1 on [a, b], then HG e OA° on [a, b],

(2) if H e OL1 on [a, b], then HG e OM° on [a, b], and

(3) G g OL3 and G e OB° on [a, b].

Proof. Since it is possible for 77 e OL1 without 77 g OL4, it is necessary

that G e OL3 if (3) is to imply either (1) or (2). Furthermore, it follows

from Lemma 3.2 that G e OB° is a necessary condition for (3) to imply

either (1) or (2). In order to show that (3) implies (1) and (2), I will show

that if 77 G OL1, then \ba 77G=0, and hence, 77G e OA° and, from Theorem

1, 77G G OM°. Let 77 g OL1 and suppose £ > 0. There exists a subdivision

E={xa}o of [a, b] and a number B such that

(1) if J is a refinement of £, then ~£J{I) \G\<B and if ueJ(I) then

\H(u)\<B, and

(2) if J is a modified refinement of £ and u e 7(7), then \H(u)\<e/2B.

Furthermore, there exists a positive number ô such that if m is a sub-

interval of either [p—à,p] or [p,p+ô] for some element p of £ then

|G(t/)|<£/4«7?. Let D be the subdivision of [a, b] such that

D=£u{xa + a}0K-1u{.xa-(5}ï,

and suppose / is a refinement of D. Let K(I) be the subset of 7(7) such that

w g K(I) only if u has an element of £ as an endpoint. Thus,

2lHG| = 2lWC|+     2     |HG|<(2nß)(£/4nß) + (£/2ß)B = £.
J(I) K(I) JU)-K(I)

Note that condition (3) of Theorem 3 is not a sufficient condition for

G € OA° on [a, b]. For example, consider the function G such that G(x,y)—

y—x if x is rational and G(x,y) = 2(y—x) if x js irrational.

Theorem 4.   7/G is a function, then the following are equivalent:

(1) if H e OL2 on [a, b], then HG e O A0 on [a, b],

(2) z/77 G OL2 on [a, b], then HG e OM° on [a, b], and

(3) G g OL3, G G OB° and G e OA° on [a, b].
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Proof. It follows as in Theorem 3 that each of ( 1) and (2) implies that

G e OL3 and G e OB°. Further, since H= 1 is in OL2, it follows that

G e O A" if ( 1) is true and G e OM° if (2) is true. Thus, it follows by using

Theorem 1 that G e OA° if (2) is true. Hence, we only need to show that

(3) implies (1) and (2). We now show that if He OL2 then HG e OA°;

then it follows from Theorem 1 that G e OM°. Suppose H e OL2 and

e>0. There exists a subdivision £={xjô of [a, b], a number B, and a set

{ají such that

(1) if J is a refinement of £ then 2.M) \^\<B, and if ¡/ eJ(I) then

\H(u)\<B,

(2) ifx,_l<^<J<^then \a<l-H(x,y)\<s¡6B,

(3) if LQ is a subdivision of [xq^x, x„] then T" |C(x,_!, x„)— y_Lq{]) G\<

e/6ß, and

(4) \aQ\<B.

There exists a positive number à such that if r and 5 are in E then

(1) [r— ó, r+ó] and [s—ó, s+ô] do not intersect, and

(2) if y is a subdivision of [r—ô, r+ô] then

Y |G| < e/6(« + \)B,
Sir)

where r—b = a if r=a and r+ô = b if r=b.

We now divide the proof into two parts. In the first part we use the

Cauchy criterion to show that J"' HG exists, and in the second part we

show that J* \HG- J" HG\=0.
Part 1.    Let D be the subdivision of [a, b] such that

D = E u {x„ - ô}\ U {xa + á}0"-\

and suppose 7 is a refinement of D. Further, let K(q) and L(q) be the subsets

of D(I) and J(I), respectively, such that u e K(q) or L(q) only if it is a sub-

interval of [x„—ô, xq+ô], and let M(q) and N(q) be the subsets of D(I)

and J(I), respectively, such that u e M(q) or N(q) only if it is a subinterval

of [xq_x + ô, x„—á]. Thus,

2 HG - 2 HG
mi) Jii)

2//c -2wc
.KM I.M

+ 2i
n

+ 2

2 HG
MM

2hg
XM

^2 |HG| + IHGI
LKiq) Lin)

2
.MM

H \G\ + 2\H-aQ
XM

+ 2\aQ\ 2 g -2g
XMMio)

< B[n + l][e/6(n + \)B + e/6(n + 1)B] + [e/6ß][2ß] + ß[e/6ß] < e.
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2
ja)

Part 2.    Let D, J, L(q) and N(q) be defined as in Part 1. Thus,

HG - ¡HG

HG + 22
0 .V(o)

= 22 mg-Ç
0 Lia) J

^22|~IWGI +   ¡no

n  |-

+ 2 2i"-ö«iigi + 2

HG .JHC

1   *-N(ti)

72      w-

+ 2 Iw
1    kv(«>

iV(o)

(H - aQ)G

-ñ

J        I—I

< B[n + l][£/6(n + l)ß + c/6(n + \)B] + [fi/6ßj[2ß] + ß[e/6ß] < e.

If we restrict our consideration to real-valued functions, then the

existence of J* £ is a sufficient condition for £g OA° [1, Theorem I, p.

155]. More generally, the existence of J„ £ is sufficient for F e OA° pro-

vided the range of £is restricted to certain rings [2, Theorem 4.1, p. 304].

The preceding argument can be used to show that 77G g OA° if 77 and G

are functions whose range is the normed ring TV.

Lemma 5.1. If G is a function such that if HeOL3 on [a,b] then

HG G OA° on [a, b], then G e AZ on [a, b].

Proof. It follows from Lemma 3.2 that G G OB° on [a, b]. Suppose

G ^ AZ on [a, b]. Hence, there exists £>0 such that if D is a subdivision of

[a, b] then there exists a modified refinement L of D such that 2z.(/> |G|>£.

There exist sequences {DJ™ and {L„}x such that

(1) D„ is a subdivision of [a, b],

(2) L„ is a modified refinement of D„ such that 2¿(/>, 1*^1 >£ and if

u G £„(7) then \G(u)\<e¡n, and

(3) Dn+1 is a refinement of £„ such that if u e Ln(I) then u %\ Dn+x(I).

Let 77 be the function such that H(u)=\G(u)\¡G(u) if u e \J?L„(I) and

G(u)t¿0, and H(u)—0 otherwise. Observe that if p e [a, b] then there

exists at most one number x such that H(p, x)?¿0 and there exists at most

one number y such that H(y,p)^0. Hence, 77 g OL3.

Since J* 77G exists and £/4>0, there exists a subdivision 7)={jc9}o of

[a, b] such that if J and K are refinements of D then

^HG-^HG
J(I) K(I)

<e/4.
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Let i be a refinement of D such that if u e J(I) then H(u)=0, and hence,

2jw HG=0. Let K=DuLSnvDSn, and let U be the set such that ueU

only if u e K(I) and u has a point of D as an endpoint. Let V=K(I)— Li.

Thus,

e/4> 2 HG - 2 HG
Kit) Jil)

2 HG + 2 HG + 0 2hg - 2ne/8n

2 HG
Lsr.il)

- ne/8n - e/4 > e - e/8 - e/4 > e/2.

This is a contradiction, and therefore, G e AZ on [a, b].

Theorem 5.    If G is a function, then the following are equivalent:

(1) ifHeOL3 on [a, b], then HG e OA° on [a, b],

(2) if He OL3 on [a, b], then HG e OM° on [a, b], and

(3) G 6 AZ on [a, b].

Theorem 6.    If G is a function, then the following are equivalent:

(1) ifHeOL4 on [a, b], then HG e OA° on [a, b],

(2) if He OL4 on [a, b], then HG e OM° on [a, b], and

(3) GeAZandGe OL* on [a, b].

Indication of Proof. In these theorems it follows that (1) implies

G e AZ by using Lemma 5.1. Further, in Theorem 6, G must be in OL*

for (1) to imply (3) since H e OL* does not imply that H e OL3. If (2) is

true, then Lemma 3.2 implies that G e OB° on [a, b]. Therefore, since (1)

implies (3), it follows by using Theorem 1 that (2) implies (3). If G 6 AZ,

H is any bounded function and e>0, then there exists a subdivision D of

[a, b] such that if J is a refinement of D and U is the set such that u e U

only if u e J(I) and contains a point of D, then

2 HG  <   2 HG+ e.

By using this, in each theorem it can be shown that (3) implies (1), and

thus, since AZ<=,OB°, it follows from Theorem 1 that (3) implies (2).

Theorem 7.    If G is a function, then the following are equivalent:

(1) ifHeOL13 on [a, b], then HG e O A0 on [a, b],

(2) if He OL13 on [a, b], then HG e OM° on [a, b], and

(3) G 6 OB° on [a, b].
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Indication of Proof. It follows from Lemma 3.2 that each of (1)

and (2) implies (3). It follows easily that (3) implies (I). Hence, by using

Theorem 1, it follows that (3) must also imply (2).

Theorem 8.   7/G is a function, then the following are equivalent:

(1) if HeOL11 on [a, b], then HG e OA° on [a, b],

(2) if He OL1* on [a, b], then HG e OM° on [a, b], and

(3) G e Oß° and G e OL* on [a, b].

The proof is similar to Theorem 7.

Theorem 9.    If G is a function, then the following are equivalent:

(1) ;/77 g OL23 on [a, b], then HG e OA° on [a, b],

(2) if He OL23 on [a, b], then HG e OM° on [a, b], and

(3) G G OB° on [a, b].

Proof. By definition, OL13^OL23. Also, if HeOL23, £>0 and

a_x<y^è, then there exist p and q such that x<p<q<y and \H(p,q)\<e.

Hence, 0L23ç OL13. Therefore, since OL13=OL23, Theorem 9 is the same

as Theorem 7.

Theorem 10. If G is a function, then the following are equivalent:

(1) if He OL21 on [a, b], then HG e OA° on [a, b],

(2) if H G OL2* on [a, b], then HG e OM° on [a, b], and

(3) G G OA° and G e OB° on [a, b].

Proof. It follows from Theorem 2 that (3) implies ( 1) and (2). Further,

it follows from Lemma 3.2 that each of ( 1 ) and (2) implies that G e OB°. If

a function 77 is considered such that H(x,y)=\, it follows immediately

that (1) implies G g OA°, and hence by using Theorem 1 that (2) implies

G G OA°.
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