APPROXIMATION BY RATIONAL FUNCTIONS ON RIEMANN SURFACES

M. GOLDSTEIN¹ AND J. L. WALSH²

ABSTRACT. In this paper, we show that if $F \in L^p(k, \alpha)$ on Γ where Γ denotes the border of a compact bordered Riemann surface \overline{R} , then F can be uniquely written as the sum of a function in $H^p(k, \alpha)$ and a function in $G^p(k, \alpha)$ and moreover that F can be approximated on Γ in L^p norm to within $A/n^{k+\alpha}$ by a sequence of rational functions on the union of \overline{R} with its double.

The purpose of this paper is to generalize some results of the second named author [4] concerning the Hardy classes H^p and their particularizations to the classes $H^p(k, \alpha)$ of functions satisfying (together with certain derivatives) a Lipschitz condition to Riemann surfaces.

Let γ denote the unit circle. We define the class $L^p(k, \alpha)$ $(0 < \alpha < 1, 1 < p < \infty)$ to be the set of functions possessing derivatives up to order k on γ whose kth derivatives satisfy a pth mean integrated Lipschitz condition of order α . $H^p(k, \alpha)$ will denote the subclass of functions belonging to $L^p(k, \alpha)$ which belong to the Hardy class H^p of the interior of γ while $G^p(k, \alpha)$ will denote those functions belonging to $L^p(k, \alpha)$ which are boundary functions of functions belonging to H^p of the exterior of γ and vanishing at ∞ . In [4], it is shown that every function of the class $L^p(k, \alpha)$ can be written uniquely as the sum of a function in $H^p(k, \alpha)$ and a function in $G^p(k, \alpha)$. It is this result that we shall generalize to the setting of Riemann surfaces and in addition obtain some results on approximation by rational functions.

Let R denote the interior of a compact bordered Riemann surface \overline{R} with boundary Γ . Suppose f possesses derivatives up to order k on Γ . Let $\Gamma_1, \dots, \Gamma_n$ denote the connected components of Γ and let χ_i , $i=1,\dots,n$, denote the uniformizers which map Γ_i onto γ . We shall say that f is of class $L^p(k,\alpha)$ on Γ if $f \circ \chi_i^{-1}$ is of class $L^p(k,\alpha)$ on Γ for all i. This definition is independent of the choice of uniformizing variables as a consequence of a theorem of Hardy and Littlewood [3].

Received by the editors February 4, 1972.

AMS 1969 subject classifications. Primary 3070; Secondary 3067.

Key words and phrases. Lipschitz condition, Hardy classes, rational functions, meromorphic differential.

¹ The author is partially supported by an NSF research associateship.

² The author is partially supported by USAF grant AF-69-1690.

Let $\zeta \in R$ and denote by $g_{\zeta}(z)$ the Green's function of R with pole at ζ . Let \hat{R} denote the double of R. By the symmetry principle, $g_{\zeta}(z)$ has a meromorphic extension to $\bar{R} \cup \hat{R}$ which we shall continue to denote by $g_{\zeta}(z)$. Let $\delta g_{\zeta}(z) = 2(\partial g_{\zeta}(z)/\partial z) dz$ and let $\partial_{\delta g_{\zeta}(z)}$ denote the divisor of $\delta g_{\zeta}(z)$. Define $H^p(\hat{R}, \partial_{\delta g_{\zeta}(z)}|\hat{R})$ to be the class of meromorphic functions f on \hat{R} which outside of a compact subset of \hat{R} belong to the Hardy class H^p and have the property that $\partial_f + \partial_{\delta g_a} \ge 0$. Let $H^p(R)$ denote the Hardy class of analytic functions on R whose moduli raised to the pth power possess a harmonic majorant. Let $H^p(k, \alpha)$ denote the class of functions in $H^p(R)$ whose boundary values belong to $L^p(k, \alpha)$. Let $G^p(k, \alpha)$ denote those functions in $H^p(\hat{R}, \partial_{\delta g_{r}(z)}|\hat{R})$ whose boundary functions belong to $L^p(k, \alpha)$.

We shall now state and prove our main theorem which is a generalization of Theorem 4 in [4].

THEOREM 1. Let $F(z) \in L^p(k, \alpha)$ on Γ . Then on Γ we may write $F(z) \equiv f(z) + g(z)$ where $f(z) \in H^p(k, \alpha)$ and $g(z) \in G^p(k, \alpha)$.

PROOF. The assumption that $F \in L^p(k, \alpha)$ on Γ implies that F is of class L^p on Γ and hence by a theorem of Heins [2, Theorem 8, p. 81] we may write $F(z) \equiv f(z) + g(z)$ where $f \in H^p(R)$ and $g \in H^p(\hat{R}, \partial_{\delta g_{\zeta}(z)}|\hat{R})$. Furthermore, $||f||_p$, $||g||_p \leq C||F||_p$ where C is a constant depending only on p. By $||F||_p$, we mean

$$\left(\frac{1}{2\pi}\int_{\Gamma}|F|^{p}\frac{\partial g_{\zeta}(z)}{\partial n}\,dS\right)^{1/p}.$$

Thus it follows from these Riesz type inequalities together with Theorem 1 in [4] that f and g are of class $L^p(k, \alpha)$ on Γ . Hence f and g belong respectively to the classes $H^p(k, \alpha)$ and $G^p(k, \alpha)$.

Insofar as approximation by rational functions goes, we have the following result.

THEOREM 2. Under the conditions of Theorem 1, there exist rational functions $R_n(z)$ on $\overline{R} \cup \hat{R}$ satisfying

$$||F(z) - R_n(z)||_p \le A/n^{k+\alpha},$$

and conversely if there exist rational functions $R_n(z)$ on $\overline{R} \cup \widehat{R}$ which are free from poles on Γ and which satisfy the above inequality, then $F \in L^p(k, \alpha)$ on Γ .

PROOF. Suppose first of all that $F \in L^p(k, \alpha)$. Then by Theorem 1, p. 264 in [4], there exist analytic functions $F_n(z)$ in a two-sided neighborhood \bar{D} of Γ which we can and will take to be a system of ring domains satisfying on Γ the inequality

$$||F(z) - F_n(z)||_p \le A'/n^{k+\alpha}$$

It follows from a construction given by Behnke and Sommer [1, pp. 583-584] that there exists a meromorphic differential $dw(\zeta, z)$ on $\overline{R} \cup \hat{R}$ which for fixed z is a differential in ζ which on \overline{R} is analytic except for a simple pole at z with residue 1 while for fixed ζ , $w(\zeta, z)$ is a meromorphic function on $\overline{R} \cup \hat{R}$ which is free from poles on Γ . By taking \overline{D} so small that for $\zeta \in \overline{D}$, $\zeta \neq z$, $dw(\zeta, z)$ for fixed z is an analytic differential in \overline{D} , we have by the residue theorem [1, p. 545] that, for $z \in \Gamma$,

$$F_n(z) = \frac{1}{2\pi i} \int_{\partial D} F_n(\zeta) \, dw(\zeta, z).$$

We now approximate the integral by a sum and thus obtain the existence of rational functions on $\overline{R} \cup \hat{R}$ satisfying the inequality

$$||F_n(z) - R_n(z)||_n \le 1/n^{k+\alpha}$$
.

Combining this with the first inequality, we have on taking A = A' + 1 the desired conclusion. To obtain the converse, we have merely to apply Theorem 1 in [4].

It is interesting to observe that if we apply Heins' theorem to the rational functions $R_n(z)$, we obtain the existence of functions $p_n(z) \in H^p(R)$ and $q_n(z) \in H^p(\hat{R}, \partial_{\delta g_{\zeta}(z)} | \hat{R})$ such that on Γ ,

$$||f(z) - p_n(z)||_p \le A/n^{k+\alpha}, \quad ||g(z) - q_n(z)||_p \le \dot{A}/n^{k+\alpha}.$$

REFERENCES

- 1. H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Die Grundlehren der math. Wissenschaften, Band 77, Springer-Verlag, Berlin, 1962. MR 26 #5137.
- 2. M. Heins, *Hardy classes on Riemann surfaces*, Lecture Notes in Math., no. 98, Springer-Verlag, Berlin and New York, 1969. MR 40 #338.
- 3. J. L. Walsh and H. G. Russell, Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions, Trans. Amer. Math. Soc. 92 (1959), 355-370. MR 21 #7311.
- 4. J. L. Walsh, Mean approximation by polynomials on a Jordan curve, J. Approximation Theory 4 (1971), 263-268.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742