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A SPLITTING THEOREM FOR ALGEBRAS OVER
COMMUTATIVE VON NEUMANN REGULAR RINGS

WILLIAM  C.   BROWN

Abstract. Let R be a commutative von Neumann ring. Let

A be an A-algebra which is finitely generated as an /{-module and

has AjN separable over R. Here N is the Jacobson radical of A.

Then it is shown that there exists an /{-separable subalgebra 5 of

A such that S+N=A and SnN=0. Further it is shown that if T

is another /{-separable subalgebra of A for which T+N=A and

7"n/V=0, then there exists an element ne N such that

(l-n)S(l—«)"' = 7". This result is then used to determine the

structure of all strong inertial coefficient rings.

Introduction. The purpose of this note is to prove the following

theorem: Let R be a commutative von Neumann regular ring. Let A be

an Ä-algebra which is finitely generated as an /^-module and has AjN

separable over R, N the Jacobson radical of A. Then there exists a separ-

able /^-subalgebra S of A such that S+N=A and Sr^N—0. In terms of

the definitions of [1], this theorem states that the pair (R, 1) is a strong

inertial coefficient ring if R is a von Neumann regular ring. This theorem

is then used to obtain a complete characterization of all strong inertial

coefficient rings.

Preliminaries. Throughout this paper, any ring will be assumed to be

associative and to contain an identity element. All subrings of a given

ring are assumed to contain the identity of the given ring. All ring homo-

morphisms are assumed to take the identity to identity. Pv will always

denote a commutative ring and A an /?-algebra. We shall let p and N

denote the Jacobson radicals of R and A respectively.

Let TTf):R-+R¡p be the natural projection of R onto Rjp. Then R together

with a ring homomorphism ê:Rjp-*R will be called a pair and written

(R, ê) if 7r0<f is the identity map on R/p. The pair (R, ¿f) is called a strong

inertial coefficient ring if for every Pv-algebra A which is finitely generated

as an P-module and has AjN separable over R, there exists an (Rjp)-

separable subalgebra 5 of A such that S+N=A and 5nAr=0. The basic

properties of strong inertial coefficient rings can be found in [1].
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The ring R is a von Neumann regular ring if for every z in R there

exists a y in R such that zyz=z. The proof of the main result in this paper

is based on the theorems and techniques which appear in [6]. The author

assumes the reader is familiar with these results.

The main result.    We begin with the following lemma:

Lemma 1. Let A be an R-algebra. Then A is separable over R if there

exist elements {ax, • ■ ■ , a„} and {a[, ■ ■ - , a'n} in A such that

(1) 2ta a'fii - 1 ;
(2) for every a e A, there exist constants Âu(a) e R, i, j~\, ■ ■ ■ , n

such that
n n

afi = 2 'Áüai    and    aa'i - 2 Xna'y
J=l J=l

Proof. Let 7 denote the kernel of the multiplication mapping /u:

A <®RA°-+A. Then A is separable over R if and only if 0-»7->^ ®RA°-^"

A—>-0 splits as (A ®R y4°)-modules. That is, A is separable over 7? if and

only if there exists an (A ®R A°)-modu\e homomorphism P:A-*A ®R A°

such that pP is the identity map on A. Conditions Io and 2° of the lemma

imply that the map P:A-+A ®RA° defined by P(l)— 2Li ai®Qi is an

(A ®R A°)-modu\e homomorphism for which pP is the identity map.    D

Theorem 1. Let R be a commutative von Neumann regular ring. Let A

be an R-algebra which is finitely generated as an R-module and has AjN

separable over R. Then there exists an R-separable subalgebra S of A such

that S+N=A and Sr¡N=0.

Proof. Let X(R) denote the decomposition space of R [6, p. 8]. Let

x e AX7?). If M is any 7?-module, we shall let Mx be M ®R RjxR. It is well

known that ®R Rx is an exact functor. Hence 0^>-Nx-+Ax-^(AlN)x-*0

is an exact sequence of 7^-algebras. Since 7? is a von Neumann regular ring,

Rx is a field. (A/N)x being a homomorphic image of AjN is separable

over Rx. Thus 7YX is the Jacobson radical of Ax. By Wedderburn's theorem,

there exists an 7?x-subalgebra Sx of Ax such that NX©SX=AX.

If a eA, we shall denote by ax the image of a in Ax=A\xA. Thus

ax=a+xA (x=xR). Now let {aly ■ ■ ■ , an} be a set of 7?-module generators

for A. Then if tt-.A^-AJN denotes the natural projection of A onto A/N,

we have {(a1)x, ■ ■ ■ , (a„)x} generates Ax as an ^-module, {7t(a1)=ä1,

7r(an) = än} generates AjN as an 7?-module and {(ä^)x, • • , (än)x) generates

{A¡N)X as an 7^-module. Since Sx is an 7?x-separable subalgebra of Ax

which is isomorphic to (A/N)x, we can make the following statements:



1972] A  SPLITTING THEOREM 371

Io. There exist elements sx, ■ • • , 5^1) e Sx ar|d elements r*jk e Rx, i, j,

k—l,---, m(x) and rf e Rx, i= 1, • • • , m(x) such that

(a) {sx, • • • , Sm(X)} is a vector space basis of Sx over Rx,

(b) a?J?-Z£Ï)fÎS»jS for all i,j=\, ■ ■ ■, m(x),
(c) l.-22S"fM.

Here m(x) denotes some positive integer depending on x.

2° [4, Theorem 71.6]. There exist elements r* e Rx, /, y=l, ■ • •, m(x)

such that sf='2jí"} rf¡s*, for ;=1, ■ • ■ , m{x), satisfy the following two

properties:

(a) SEÏ'jfif-1^
(b) for all j« e S,, if s?5*= 2™'?' 4*1 for /= 1, • • • , m^) (A?,- e /y,

thenj-^f^Srií'^f-
3°. There exist elements r?,- e Rx, i= 1, • • • , n,j— 1, • • • , m{x), and

elements z? e A',, such that

mix)

(aX - 2 i«s* - *'   for / = 1, • • • , n.
¿=i

Now let {/,#}, {/¿}{/i3} and {t^} e R such that their images in Rx are

f/5*}, {r*},{r*j} and {r*} respectively. Similarly let {sx, ■ ■ ■ ,sm{x)} and

{zx, ■ • • , zr¡} be elements in A and A^ respectively such that their images are

{si, • • • , j*,,)} and {z\, • ■ • , z*} in /Í*. Now the elements

mix) mix) mix)

*iSj - 2 rnA,    i - 2 rA and a¿ - 2 '»5i - z¿
fc=l 1=1 3=1

may be viewed as global sections on the sheaf &/{A) [6, p. 18] over X(R).

These sections are zero at x and hence are zero on some open set U of

X(R) containing x. Thus for all y e U, the sections sx, ■ ■ ■ , smix) generate

an .Ry-subalgebra Sv of Ay such that Ny + Sy=Ay.

Now í¿ = y^í' r^Sj, i=l, ■ ■ ■ , m(x), may also be viewed as sections on

stf{A). The section V?!? Qjif '■1)sj).s1-l is zero at .v. Hence by shrinking

U if need be, we may assume for all y e U,

miX)

! = 1

By l°(b) and 2°(b), we have *5if-2£i? r'a4 for all i,j=\, ■ • • , m(x).
Thus, by shrinking U still further if need be, we can assume for all y e U

and for all 1,7=1, • • • , m(x),

mix)

(Sj)y(s'i)y  =  2 (rkii)y(h)r
i-=l
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Since each Sv, for y eU, is generated as an 7?„-module by (s^, • ■ • ,

(im(j)),, we get for every ae Sy there exist constants A„(a) in Rv such that

mix) mix)

(s¿)„a = 2 *iÂa)(si)v   and   ö(si)„ = 2 h&Xßdv
i=l J=l

Thus by Lemma 1, each S1,, for j e t/ is a separable Tî^-subalgebra of Ay.

Since 7?v is a field, 5y is semisimple. Hence NynSy=0.

Since x was an arbitrary point of X(R), we have proven the following

assertion: For each point x in X(R), there exists an open set Ux in X(R)

containing x and there exist elements Sxix), ■ • ■ , smlx)(x), s[(x), • • • ,

s'mix)(x) eA, Zi(x), • • • . z»W 6 W, and elements {r<Jfc(x)}, {r<(x)}, {rM(x)},

{fi}-(*)} e R such that the elements 5i(x)y, • ■ ■ , sm{x)(x)y, generate an Ry-

subalgebra Sy for which Sy@Ny=Ay, for all y e Ux. Now {Ux\x e X(R)}

is an open covering of X(R). Hence by the partition property, there exist

a finite number of open and closed, pairwise disjoint subsets Nlt ■ ■ • , NQ

of AY.7?) such that \jNi=X(R) and each N¡ is contained in some Ux.

Let xu • • • , xt be elements in X(R) such that /V¿c ¡Jx. for i= 1, • • • , q.

On each Nt we may restrict the sections s^xj, ■ • • , sm(X.,(xf), s[(xf), • • • ,

•4<*f)(*<), Zi(*i)t - " » *»(*<)> {ri}k(xi))>etc- Let w=max{m(^1), • • •, m(x8)}.

Since the A7,-'s are pairwise disjoint, we may piece the sections together on

each open set N¡ to form global sections

s\, ■ ■ • , sm, si ■ • ■ , i; e T(X(R), sé (Ay),   f1? • • • , zn e T(X(R), s/(N))

and {rijk}, {rj, {*„}, ft,} 6 r(X(R), M(R)) as follows:

(Sj(Xl)a   ifl ^y^/n(xt),
For a e N¡, i = 1, • • • , q,        s ¡(a.) =

[0 if        ; > m(Xi).

The other sections are defined similarly. We now have for each x e X(R),

{s~x(x), ■ ■ • ,sm(x)} generates an T^-subalgebra Sx of Ax for which

NX®SX=AX.

Now by [6, Theorem 4.4 and Theorem 4.5], T(X(R), ¿é(A))g^A,

T(X(R), s/(N))g*N and T(X(R), St(R))^R. Thus there exist elements

Sx, • • •, Sm e A, êu ■ ■ •, f„ G AT and elements {fijk}, {ft), {fi}}, {?ä} in 7?

such that for every x in X(R)

sAx) = (íj), = ij + xA,

Zi(x) = (Zi)x = Zi + xN,

fiikix) = (rijk)x = fm + xR,   etc.

Since Hxexau xA=0, it follows easily that S=Y?=iSiR is an 7?-

subalgebra of A such that S+N=A and Sr\N=0. Since S is isomorphic

to AjN, S is separable.    D
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Corollary. Let R have Jacobson radical zero. Then the pair (R, 1)

is a strong inertial coefficient ring if and only if R is a von Neumann regular

ring.

Proof. By Theorem 1, if R is a von Neumann regular ring, then

(R, 1) is a strong inertial coefficient ring. It follows from the proof of

[3, Proposition 1] (whether R is assumed Noetherian or not) that if

(/?, 1) is a strong inertial coefficient ring, then I=P for every ideal /

in R. Hence if ze J?, then zR=(zR)2. So there exists a. y e R such that

zyz=z.    D

The Malcev analog of Theorem 1 follows immediately from [5,

Corollary 2.4]. Thus under the hypotheses of Theorem 1, if 5 and T are

two separable /?-subalgebras of A such that S®N=A and T®N=A, then

there exists an element ne N such that (1 — n)S{\ —n)~1=T.

In terms of the definitions in [1], Theorems 1 and 2 may be summarized

as follows: If R is a von Neumann regular ring, then (R, 1) is a strong

inertial coefficient ring with the uniqueness property.

In [2], the author and E. Ingraham completely characterized all semi-

local inertial coefficient rings. Namely, a ring R is an inertial coefficient

ring with finitely many maximal ideals if and only if R is a finite direct

sum of Hensel rings. If (R, S) is a strong inertial coefficient ring, then R

is an inertial coefficient ring [1, Proposition 1]. Thus using the previous

result, we get (R, <$) is a strong inertial coefficient ring with finitely many

maximal ideals if and only if R is a finite direct sum of split Hensel rings.

In this paper, we have determined the structure of all (Jacobson) semi-

simple strong inertial coefficient rings. We may use these two results to

give a complete characterization of strong inertial coefficient rings.

Theorem 2. A pair (R, ê) is a strong inertial coefficient ring if and only

if for every x e X{R), Rx=R¡xR is a Hensel ring.

Proof. Suppose that for each x in X(R), Rx is a Hensel ring. Then

(Rx, ¿if) is a strong inertial coefficient ring. Thus the same proof as used

in Theorem 1 with minor changes shows that (R, ê) is a strong inertial

coefficient ring.

Conversely, for any pair {R, é°) we note that X(R)=X(é'(R/p)). If we

assume (R, ê) is a strong inertial coefficient ring, then for any x e X(R)

the pairs (Rx, Sx) and (R/p, 1) are also strong inertial coefficient rings.

By the corollary to Theorem 1, R/p is a von Neumann regular ring. Now

0-+Px-»Rx -*(R¡p)x -0

is exact and (R¡p)x=(Rlp)lx(R¡p) is a field. Thus Rx is a quasilocal ring.

It now follows from [2, Theorem] that Rx is a Hensel ring.
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