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A SPLITTING THEOREM FOR ALGEBRAS OVER
COMMUTATIVE VON NEUMANN REGULAR RINGS

WILLIAM C. BROWN

ABSTRACT. Let R be a commutative von Neumann ring. Let
A be an R-algebra which is finitely generated as an R-module and
has A/N separable over R. Here N is the Jacobson radical of A.
Then it is shown that there exists an R-separable subalgebra S of
A such that S+N=4 and SNN=0. Further it is shown that if T
is another R-separable subalgebra of A4 for which T+N=4 and
TNN=0, then there exists an element n€N such that
(1—=n)S(1—n)~*=T. This result is then used to determine the
structure of all strong inertial coefficient rings.

Introduction. The purpose of this note is to prove the following
theorem: Let R be a commutative von Neumann regular ring. Let 4 be
an R-algebra which is finitely generated as an R-module and has 4/N
separable over R, N the Jacobson radical of 4. Then there exists a separ-
able R-subalgebra S of A4 such that S+ N=4 and SNN=0. In terms of
the definitions of [1], this theorem states that the pair (R, 1) is a strong
inertial coefficient ring if R is a von Neumann regular ring. This theorem
is then used to obtain a complete characterization of all strong inertial
coefficient rings.

Preliminaries. Throughout this paper, any ring will be assumed to be
associative and to contain an identity element. All subrings of a given
ring are assumed to contain the identity of the given ring. All ring homo-
morphisms are assumed to take the identity to identity. R will always
denote a commutative ring and 4 an R-algebra. We shall let p and N
denote the Jacobson radicals of R and A respectively.

Let 7y: R—R/p be the natural projection of R onto R/p. Then R together
with a ring homomorphism &: R/p—R will be called a pair and written
(R, &) if my& is the identity map on R/p. The pair (R, &) is called a strong
inertial coefficient ring if for every R-algebra 4 which is finitely generated
as an R-module and has A/N separable over R, there exists an (R/p)-
separable subalgebra S of A such that S4+N=4 and SNN=0. The basic
properties of strong inertial coefficient rings can be found in [1].

Received by the editors February 8, 1972.
AMS (MOS) subject classifications (1970). Primary 13B20, 16A16, 16A56.
Key words and phrases. von Neumann ring, strong inertial coefficient ring.

© American Mathematical Society 1973

369



370 W. C. BROWN [December

The ring R is a von Neumann regular ring if for every z in R there
exists a y in R such that zyz=z. The proof of the main result in this paper
is based on the theorems and techniques which appear in [6]. The author
assumes the reader is familiar with these results.

The main result. We begin with the following lemma:

LEMMA 1. Let A be an R-algebra. Then A is separable over R if there

exist elements {a,, - - - ,a,} and {a3, - - - , a,} in A such that

(1) 2%, aa; = 1;

(2) for every a€ A, there exist constants i(a)€ R, i, j=1,---,n
such that

n n
a,a = Z Aa; and aa; = Z A;a5.
i=1 i=1

PROOF. Let I denote the kernel of the multiplication mapping u:
A ® p A°—A. Then A is separable over Rif and only if 0—I—A4 ® p A°—*
A—0 splits as (4 ® p A°)-modules. That is, 4 is separable over R if and
only if there exists an (4 ® , 4°)-module homomorphism P:4—A4 @ A°
such that uP is the identity map on A. Conditions 1° and 2° of the lemma
imply that the map P:4—A4 ® A° defined by P(1)=>7, ai®a; is an
(A ® g A°)-module homomorphism for which uP is the identity map. O

THEOREM 1. Let R be a commutative von Neumann regular ring. Let A
be an R-algebra which is finitely generated as an R-module and has A|N
separable over R. Then there exists an R-separable subalgebra S of A such
that S+ N=A and SNN=0.

PrOOF. Let X(R) denote the decomposition space of R [6, p. 8]. Let
x € X(R). If M is any R-module, we shall let M, be M ®,, R/xR. It is well
known that ®@p R, is an exact functor. Hence 0—N,—A4,—(A/N),—0
is an exact sequence of R,-algebras. Since R is a von Neumann regular ring,
R, is a field. (4/N), being a homomorphic image of A/N is separable
over R,. Thus N, is the Jacobson radical of 4,. By Wedderburn’s theorem,
there exists an R,-subalgebra S, of A4, such that N &S, =4,.

If ae A, we shall denote by a, the image of a in A,=A/xA. Thus
a,=a+3%A (x=xR). Now let {a;, - - - , a,} be a set of R-module generators
for A. Then if 7: 4—A/|N denotes the natural projection of 4 onto A/N,
we have {(a)),, -, (a,),} generates 4, as an R,-module, {n(a,)=a,,
w(a,)=4a,} generates A/N as an R-module and {(4,),, - -  , (4,),} generates
(A/N), as an R,-module. Since S, is an R,-separable subalgebra of 4,
which is isomorphic to (4/N),, we can make the following statements:
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1°. There exist elements s7, - * -, Sq(z) € S, and elements ri;. € Ry, i, J,

k=1,---, m(x) and r{ e R,, i=1, - - -, m(x) such that
(a) {s3, -, Sm]} Is @ vector space basis of S, over R,
(b) sisi= ’"(”" ripsg for all i, j=1, - - -, m(x),

()1 =$I"(‘) rist.

Here m(x) denotes some positive integer depending on x.
2° [4, Theorem 71.6). There exist elements ri; € R, i, j=1,- -+, m(x)
such that s¥'=3S7% r%s%, for i=1,- -, m(x), satisfy the following two
properties:
(@) STP sTst=1,,

(b) for all sxes,,, if s%s%=ST® %% for i=1, - - -, m(x) (A% € R,),
then s%s7 =S¢ 25,57
3°, There exist elements ti,€ R, i=1, - ,n,j=1,---,m(x), and

elements z§ € N, such that

m(x)

(a), — ZI,,S,—Zfc fori=1,---,n.

Now let {r,;;}, {r;}{r;;} and {t;;} € R such that their images in R, are
{rfay, {ri}, {rf;} and {t7;} respectively. Similarly let {s,, - - -, Sy} and
{z1, ", z,} be elements in 4 and N respectively such that their images are
{s3, -, St and {zf,-- -, zz} in A,. Now the elements

m(z) mlzx) m(x)

5;8; — Z TiikSks 1 — Z rs; and a; — Z 18; — 2
k=1

i=1 j=1

may be viewed as global sections on the sheaf s7(4) [6, p. 18] over X(R).
These sections are zero at x and hence are zero on some open set U of

X(R) containing x. Thus for all y € U, the sections s,, - * -, 5,,(,) generate
an R,-subalgebra Sy of A, such that N,+S,=4,.
Now s{=3>m% r,s,, i=1, , m(x), may also be viewed as sections on

&Z(A). The section ?{".‘i” (Z"" r;;8;)s;,—1 is zero at x. Hence by shrmkmg
U if need be, we may assume for all y € U,

m(x)

> )y = 1,
=1

By 1°(b) and 2°(b), we have sis¥' =375 riust for alli, j=1,- -, m(x).
Thus, by shrinking U still further if need be, we can assume for all y e U
and for all i, j=1,-- -, m(x),

miz)

(55D = 2 (Fes(si),

k=1



372 W. C. BROWN [December

Since each S,, for y e U, is generated as an R,-module by (sy),, -,
(Sm(z))y» We get for every a € S, there exist constants 4;;(a) in R, such that

m(zx) m(z)
(s)ha = 2 a)sy), and a(s), = 2, A, {a)s)),
j=1 =1
Thus by Lemma 1, each S, for y € U is a separable R,-subalgebra of 4,.
Since R, is a field, S, is semisimple. Hence N,NS,=0.

Since x was an arbitrary point of X(R), we have proven the following
assertion: For each point x in X(R), there exists an open set U, in X(R)
containing x and there exist elements s5,(x), ", Sp(X), 51(x)," -,
S;n(x)(x) € A4, z;(x), " -, z,(x) € N, and elements {rijk(x)}9 {r:(x)}, {rij(x)},
{t,;()} € R such that the elements 5,(x),, = * * , Sy (X),, generate an R~
subalgebra S, for which S,@&N,=4,, for all y € U,. Now {U,|x € X(R)}
is an open covering of X(R). Hence by the partition property, there exist
a finite number of open and closed, pairwise disjoint subsets Ny, - - -, N,
of X(R) such that UN,;=X(R) and each N; is contained in some U,.

Let x,, - -+, x, be elements in X(R) such that N;= U, for i=1,---,q.
On each N; we may restrict the sections 5,(x,), * =, Sp(z(X)s S1(X2)s -~ * 5
Sm(zp(X)s 21(x), -7, 2,(x3), {rip(x)}, etc. Let m=max{m(x,), - - - , m(x,)}.
Since the N;’s are pairwise disjoint, we may piece the sections together on
each open set N, to form global sections

51, T jmv 5;7 T j;n € F(X(R)a 'M(A))’ 51’ T 571 € F(X(R)> .,Q{(N))
and {F;;;}, {7}, {Fi;}, (T} € I'(X(R), Z(R)) as follows:

s'(xi)a lf 1 é ] é m(xi)’
ForaeN,i=1,--,¢q, §i(0) = ’ g
if j > m(x).

The other sections are defined similarly. We now have for each x € X(R),
{§,(x), - - -, §,.(x)} generates an R,-subalgebra S, of A, for which
N,®S,=A4,.

Now by [6, Theorem 4.4 and Theorem 4.5], ['(X(R), &/(A))=A,
I'(X(R), &/ (N))=N and I'(X(R), Z(R))=R. Thus there exist elements
$,,° " ,8,€A, %, --,%,€N and elements {7}, {F,}, {f;}, {f;} in R
such that for every x in X(R)

5:(x) = (8). =, + X4,
2(x) = (¢). = z; + XN,
Fi(®) = (Fiju). = Fije + XR, etc.
Since (N,ex(r) ¥4=0, it follows easily that S=>7., §,R is an R-

subalgebra of 4 such that S+ N=4 and SNN=0. Since S is isomorphic
to A[N, S is separable. [J
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COROLLARY. Let R have Jacobson radical zero. Then the pair (R, 1)
is a strong inertial coefficient ring if and only if R is a von Neumann regular
ring.

Proor. By Theorem 1, if R is a von Neumann regular ring, then
(R, 1) is a strong inertial coefficient ring. It follows from the proof of
[3, Proposition 1] (whether R is assumed Noetherian or not) that if
(R, 1) is a strong inertial coefficient ring, then I=1I* for every ideal I
in R. Hence if z € R, then zR=(zR)> So there exists a y € R such that
zyz=z. O

The Malcev analog of Theorem 1 follows immediately from [5,
Corollary 2.4]. Thus under the hypotheses of Theorem 1, if S and T are
two separable R-subalgebras of A such that SOSN=4 and T§ N=A4A, then
there exists an element n € N such that (1—n)S(1—n)"1=T.

In terms of the definitions in [1], Theorems 1 and 2 may be summarized
as follows: If R is a von Neumann regular ring, then (R, 1) is a strong
inertial coefficient ring with the uniqueness property.

In [2], the author and E. Ingraham completely characterized all semi-
local inertial coefficient rings. Namely, a ring R is an inertial coefficient
ring with finitely many maximal ideals if and only if R is a finite direct
sum of Hensel rings. If (R, &) is a strong inertial coefficient ring, then R
Is an inertial coefficient ring [1, Proposition 1]. Thus using the previous
result, we get (R, &) is a strong inertial coefficient ring with finitely many
maximal ideals if and only if R is a finite direct sum of split Hensel rings.
In this paper, we have determined the structure of all (Jacobson) semi-
simple strong inertial coefficient rings. We may use these two results to
give a complete characterization of strong inertial coefficient rings.

THEOREM 2. A pair (R, &) is a strong inertial coefficient ring if and only
if for every x € X(R), R,=R/xR is a Hensel ring.

PROOF.  Suppose that for each x in X(R), R, is a Hensel ring. Then
(R;, &,) is a strong inertial coefficient ring. Thus the same proof as used
in Theorem 1 with minor changes shows that (R, &) is a strong inertial
coefficient ring.

Conversely, for any pair (R, &) we note that X(R)=X(E(R[p)). If we
assume (R, &) is a strong inertial coefficient ring, then for any x € X(R)
the pairs (R,, ;) and (R/p, 1) are also strong inertial coefficient rings.
By the corollary to Theorem 1, R/p is a von Neumann regular ring. Now

0—p,—~R,— (Rlp).—0

is exact and (R/p),=(R/p)/x(R/p) is a field. Thus R, is a quasilocal ring.
It now follows from [2, Theorem] that R, is a Hensel ring.
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