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ON A GEOMETRIC CONDITION RELATED TO
BOUNDEDLY COMPLETE BASES AND NORMAL
STRUCTURE IN BANACH SPACES

P. CASAZZA

ABSTRACT. A basis {x,} of a Banach space X is said to satisfy
property A if for every number C>0 there exists a number
r.>0 such that |57  ax;=1 and | O® ey @Xi||ZC imply
1> 2, %xillZ14r.. It is known that property A implies: (1) {x,}
is a boundedly complete basis of X, and (2) every convex, weakly
compact subset of X has normal structure. In this paper, we
construct a reflexive Banach space X, with an unconditional basis
{x.}, such that: (a) X has normal structure, and (b) there does not
exist an equivalent norm on X with respect to which {x,} satisfies
property A; showing that the converse of (1) and (2) is invalid
even with the weaker conclusion that {x,} be equivalent to a basis
satisfying property A.

1. Introduction. Let {x,} be a basis of a Banach space X. A. R.
Lovaglia [5] defines a property for bases, which we shall call property A:

(A) For each number C>0, there exists a number r,>0, such that
132y el =1, | S2nir e ZC imply | 52, ax | Z 147,

He then states without proof [5, p. 234]:

THEOREM A. If {x,} satisfies property A, then {x,} is a boundedly
complete basis.

A proof of Theorem A is given in [6] with a note that it is due to A.
Pefczynski. It is then asked if every boundedly complete basis is equivalent
to a basis satisfying property A.

Property A appears again in [3], where Gossez and Lami Dozo prove

THEOREM B. If {x,} satisfies property A, then every convex, weakly
compact subset of X has normal structure.

Recently, Zizler [7] has shown that every separable normed linear
space can be renormed so as to have normal structure. Theorem B is of
particular importance as Kirk [4] proves that in a Banach space X, every
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nonexpansive mapping of a convex, weakly compact subset of X, with
normal structure, into itself has a fixed point.

It is easily seen that the converse of Theorems A and B are invalid by
taking a two-dimensional /, space and choosing two linearly independent
vectors which do not satisfy property A. However, finite dimensional
spaces can always be renormed so that a given basis satisfies property A.
We will show that the converse of Theorems A and B are invalid even with
the weaker conclusion that {x,} be equivalent to a basis satisfying property
A, by proving

THEOREM 1.  There exists a reflexive Banach space X, with an uncon-
ditional basis {x,}, such that there does not exist an equivalent norm on X
with respect to which {x,} satisfies property A.

2. Proof of Theorem I.

DEerFINITION 1. A Banach space is uniformly convex (u.c.) if for every
£>0 there exists §>0 such that whenever | x|, [[y| =1, and [x—y|=e¢,
then [|(x+y)[2| S1—6.

DerFiniTION 2. If B, is a Banach space with norm |-||,, for n=
1,2,3,---,P,({B,}) is the Banach space of all sequences y={y,},
¥n € B,, for which >, | y,ll2< o0, with the norm || yll= (22 ly.ll2)!>.

For each natural number n, let /° denote n-dimensional Euclidean
space with the sup norm |||, and let {e;};_; be the unit vector basis of
I7. Let 1<g< o0 and X=P,({I;}). Let {x,} be the basis of X defined by:

Xl = (e}7 (07 0)7 (0, 0’ 0), s '),
x2 = (0’ (eé» 0)9 (0, 0, 0)7 o ')7
X3 = (07 (0’ eg)’ (0, 0’ 0)9 tC ')’

It is well known that {x,} is an unconditional basis of X, and that {x,} is
boundedly complete (since X is reflexive).

Assume there exists an equivalent norm |-| on X with respect to which
{x,} satisfies property A. Then there exist constants K;, K,>0 such that
Ki|x|Zllxl =K,|x| for all x € X. Let C=K,/K, and r, the number defined
by property A. Fix-i=1 and let /=2%. Set p=>3.7"j, and, for any
1=n=2%—1, let r,=|>2%". | x,|. Finally, define a sequence of scalars,

{0},

oy =10 ifl <k =p,
=0 if p+ 2n < k.
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Then,
p+n p+n
1
(2.1?) :E:ka}(k = Jck = 1,
k=1 Fo | k=p+1
and,
p+n ] p+n
r, = X S — X
k=p+1 Kl k=p+1
_ L zn:e‘ - L forn=1,2
- kil — - 4
Killgm I Ky
Therefore,
o ] p+2n
n
Z Xy = — Xy
k=p+n+1 Ty | k=p+n+l
11 =&
Z—=— X
K?. rn k=p+n+1
2
LSt i elll = K _ C
= k|| — - .
Kol lia I K
Then, since {x,,} satisfies property A,
=] p+2n
Z z xk g 1 + rc’
k=1 rn k=p+1
and by (2.1), for all 1=n=2%"1, we have,
2 -2
02y 2Esn] QR PEL ] s 1oy,
= = — =D+ = ¢
|Zfi:4-l xkl (l/rn) |z:::¢l xk[ Fn
Applying (2.2),
92% 997 02,97
22550 % _ 22558 x] IZf+;+1) xkl o sz’c’iﬁu

o = i 27 = (1 + ")
|ZZ:B+1 X IZZ:;Tl X IZA— i1 X:.' IZ’?I.,?H! Xkl :
Also,
o2i 21
|z£:;+1 x| _ (1KY "Zf:iu xk” K, "Zk—l exlls _ K,
ol § i - .
Dztax] T UKD D25 x] K| Diaell K,
However, for sufficiently large i, (14r.)‘>K,/K;. This contradiction con-
cludes the proof of Theorem I.
Using the result of Zizler, we obtain a Banach space with normal

structure satisfying Theorem 1. However, it was pointed out by the referee
that the following procedure will yield concrete examples of Banach
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spaces which are locally uniformly convex, have normal structure, and
satisfy Theorem 1. Let p,, be such that p, <o and /7 is }-isometric to ;7.
Then Py({l7 }) has the desired properties by [1], [5], and the argument
given above. By applying our technique to the space d of Sargent (see
[6, p- 361]) we see that the unit vector basis of ¢ is an unconditional,
symmetric, boundedly complete, and nonshrinking basis which is not
equivalent to any basis satisfying property A. Finally, we note that it
follows from Day [2, p. 315] that none of the Banach spaces discussed
above is isomorphic to a uniformly convex space.

3. Uniformly convex spaces. Singer [6, Theorem 6.2, p. 288] shows
that property A is equivalent to:

(B) For every £>0 there exists a >0, such that |27 ; a;x;|>1—0,
1320 aox =1 imply | 52 axl Se.

It is clear from the two-dimensional example described earlier that if a
Banach space X is u.c., then a basis of X need not satisfy property A.
However, it is interesting that we do have:

THEOREM 1. If {x,} is a monotone basis of a u.c. space X, then {x,}
satisfies property B (hence, property A).

Proor. Given ¢>0, choose >0 satisfying Definition 1. Assume
there exists a sequence of scalars {«,} such that

00

z Xy

i=n+1

>1 -0, Zmix,- =1, and

> e

it

Then, {x,} is monotone implies

1—d< Zaixi =

oG,
Zo:ix,- =1
=1

If x=37_,0x, and y=3>72; ax;, then [x|, [y|=1, and [x—y|=
Hzﬁﬁamxﬂ>asoﬂmtM»fwﬂuél—é.Hmwm

which is clearly a contradiction.

By Theorem 11, it is natural to ask:

Problem 1. If {x,} is a basis of a u.c. space X, does there exist an
equivalent u.c. norm on X such that {x,}, with respect to the new norm,
is a monotone basis? If not, does there at least exist an equivalent norm
on X with respect to which {x,} satisfies property A?

I wish to express my gratitude to the referee for greatly simplifying the
material contained in this paper.

1—62 "+y

=

Z ;X

i=1

>1_6,

X,
z n+1
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