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TOEPLITZ OPERATORS AND DIFFERENTIAL

EQUATIONS ON A HALF-LINE1

J.  W.  MOELLER

Abstract. Let X be a separable Hubert space, let A0, Au • ■ - ,

An denote bounded linear operators from JT into Jf, and let 3

represent the set of all functions in L2(0, co ; Jt") whose first n

derivatives belong to L2(0, oo ; Jf). Suppose further that the space

3 is equipped with an inner product inherited from L-(0, cc;3f).

The main result of this note states that the differential operator

d" d"~l d
L = An— + An_, —— + ■■■ + Ax- + A0

dt" dt"'1 dt

acting on 3 is continuously invertible if and only if the operator

P(a) = J A*ak       (0 S k <; n)

acting on the Hubert space -f has a uniformly bounded inverse

everywhere in the open half-plane Re <7<0.

Let Jf be a separable Hubert space, and let A0, Ax, ■ ■ ■ , An denote

bounded linear operators from Jf into Jf. In what follows we will obtain

necessary and sufficient conditions to insure the continuous invertibility of

the differential operator

dn if-1 d
(1) L=:An— + An_x—:i + ---+Ax- + A,

dtn dtn l dt

acting on a dense manifold of the Hubert space £2(0, oo; Jf).

Our approach to this problem is based on the observation that L is

unitarily equivalent to a generalized Toeplitz operator. The inversion

theory of these operators was recently developed by Rabindranathan [5],

who systematically extended the previous work of Widom [7], Devinatz

[1], and Pousson [4]. Hereafter we will freely use the terminology, as well

as some of the theory, contained in Rabindranathan's paper.

To expose the connections between L and a generalized Toeplitz op-

erator, we first construct a special isometric mapping from £2(0, oo; jt)
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onto //2(¿f), the Hardy space of JT-valued analytic functions defined on

the interior of the unit disc. This is accomplished by taking the Laguerre

functions

gn(í) = i-expWj^[í"exp(-í)]
n !       \2/ dx

and then defining Jigncp)=zncp, «=0, 1, •• -, for all cp eJf. Since the

Laguerre functions constitute an orthonormal basis for F2(0, oo), the map

/may be extended linearly as an isometry from F2(0, oo; Jf) onto /72(Jf).

In the scalar case where dimJf"=l, this mapping was employed by the

author to study differentiability properties of exponential sums [3], and

it also occurs in Rosenblum's earlier work on selfadjoint Toeplitz op-

erators [6].

From the definition of a Laguerre function we deduce that

-27-"W = g»(0 + 22&(i)       (O^fc^n-1),
dt

and a short computation reveals the important identity

(2) 2JDJ-1 = (T + /)(F - /)-\

where

(r/)(z) = z-1(/(z)-/(0))
and

(Dg)(í) = lim/I-1(g(í + /i)-^g(t)).
Ä-0

This last limit is taken with respect to the norm topology on L2(0, co; Jf).

Since the open unit disc comprises the point spectrum of T, the right side

of (2) is well defined on the range of T—I, a set whose closure is all of

H2i¿f) because it contains every vector-valued polynomial

/>0O = <Pnzn + <Pn-izn~l + ■ ■ ■ + <PiZ + 9>o

with coefficients in Jf.

If A is an operator from Jf into Jf, we designate its natural extension

Â on H\X) by writing

(i/)(z) = 2 (Acpn)z\       n = 0, 1, 2, • • • ,

whenever /(z)=2 9Vn- Clearly Â commutâtes with T, and the sub-

stitution of (2) into (1) yields

(3) JU-1 = 2 2~kÂkiT + IfiT - /)"*       (0 ^ k ^ n).
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We infer from (3) that L has a bounded inverse if and only if the operator

(4) S = iT - I)-n^2~kÂkiT + IfiT - iy~k       iOz%ki%n)

shares this property too.

A more effective method for determining the continuous invertibility of

S may be obtained by examining the adjoint operator S*. Since

(£*/)(z) = zfiz)   and    (Â*f)(z) = £ iA*tpv)z»,

a standard calculation involving the adjoint of a densely defined operator

[2, p. 69] shows that

(5) iS*f)iz) = R(z)/(z)

where

(6) Riz) = 2 2~kA%z + \)\z - 1)-*       (0 ^ k i% n).

According to a well-known result (Lemma 4.2 in [5]), S* has a bounded

inverse if and only if there exists an analytic Toeplitz operator ß(z) =

2 Qnzn, n=0, 1, ■ • • , defined on the interior of the unit disc such that

Riz)Qiz) = <2(z)R(z) = /   and    sup ||Q(z)|| < oo.
|Z|<1

With this information at hand, it is possible to enunciate a simple in-

vertibility criterion.

Theorem. Let CAT be a separable Hubert space, let A0, Ax, • • ■ , An

denote bounded linear operators from Jf into C/f ', and let Q represent the

set of all functions in L2(0, co;Jf^) whose first n derivatives lie in

£2(0, oo; .jf). Suppose further that 2 is endowed with the inner product

inherited from Z.2(0, co; Jf"). Then the differential operator

dn dn~l d

L = An—+ An_x -7— + • • • + Ax — + A0
dtn di"_1 dt

acting on 2 has a bounded inverse if and only if the operator

Pia) = 2 A*kok       (OSkSn)

acting on the Hilbert space Jf has a uniformly bounded inverse everywhere

in the open half-plane Re <r<0.

Proof. According to the arguments advanced before the derivation of

(3), L has a bounded inverse if and only if the operator S enjoys the same

property. It follows from elementary Hilbert space theory that L has a

bounded inverse if and only if the adjoint operator S* defined by (5) has a
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bounded inverse on H2iJÍ). Moreover, since the linear fractional trans-

formation z=(2ff+ l)(2a—1)_1 maps the half-plane Re ct<0 onto the disc

|z|<l, we see from Rabindranathan's lemma that S* has a bounded in-

verse if and only if the operator-valued polynomial

has an analytic inverse which is uniformly bounded everywhere in the half-

plane Re <r<0. But the inverse of an operator-valued polynomial is clearly

analytic, and this completes the proof.

A special case of our theorem deserves attention because of its utility in

the study of matrix differential equations.

Corollary. When the dimension ofJf is finite, L has a bounded inverse

if and only if the determinant of Pia) has no zeros in the closed left half plane.

One final remark should be made at this point: It seems quite probable

that our techniques can be extended to cope with differential equations

having unbounded coefficients. Some results in this direction are now being

prepared for later publication.
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