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A  ROLE  FOR  DOUBLY  STOCHASTIC  MATRICES
IN GRAPH THEORY

D.  J.  HARTFIEL  AND  J.  W.  SPELLMANN

Abstract. This paper represents a strongly connected digraph

as a doubly stochastic matrix. It then uses this doubly stochastic

representation to prove several theorems concerning the critical

arcs of strongly connected graphs.

Definitions and notation. The definitions concerning matrix theory for

the most part may be found in [3]. All others will be given below.

An nxn nonnegative matrix A = (aij), so that 27e aiR=y,Ram=^ for

each i 6 {1,2, • • • , «}, is called a A-doubly stochastic matrix. If A=l,

the matrix is simply called doubly stochastic. A pair of matrices A = (ai3)

and B=(bu) such that au=0 if and only if bu=0 are said to have the same

0-pattern. If there is a doubly stochastic matrix B which has the same

0-pattern as A, then A is said to have doubly stochastic pattern. We say

that A has a loop if A has distinct positive entries

a¡ i , a¡ ; , a,- ¡ , a, ,-,■•• , a, , , a, ,•    , a,    ,-     = a, ,■ .

Finally, let Eu denote the nxn (0, l)-matrix with a one only in the yth

position.

All definitions concerning graph theory can be found in [1] and [5].

Results. We first establish a relation between doubly stochastic matrices

and digraphs. For this we include the following two theorems.

Theorem 1. A digraph G is strongly connected if and only if its associated

matrix A is irreducible [10, p. 20].

Theorem 2. If A is an irreducible matrix, then there is a diagonal

matrix D with positive main diagonal so that DA D"1 has its ith row sum

equal to its ith column sum for each i E {1, 2, • • • , n) [6, p. 3].

Now a positive main diagonal may be added to the matrix DAD"1 to

yield a A-doubly stochastic matrix where A>1. Hence the relation between

doubly stochastic matrices and digraphs may be stated as:
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Theorem 3. A digraph is strongly connected if and only if there is a

doubly stochastic matrix M with positive main diagonal so that

(a) M is irreducible, and

(b) M = (mi7) is such that ifi^j then /w,-,->0 if and only if there is an arc

from x¿ to Xj.

Any such matrix M is called a doubly stochastic model of G. We now

give three lemmas concerning doubly stochastic matrices.

Lemma 1. Suppose A is nonnegative with a positive main diagonal.

Then the following two statements are equivalent.

(a) A has doubly stochastic pattern.

(b) There is a permutation matrix P so that PAPT is a direct sum of

irrreducible matrices, i.e. A is completely reducible.

Proof. We first show that (a) implies (b). For this we may assume

that A is doubly stochastic. If A is irreducible we are through. If A is

reducible, then there is a permutation matrix P so that PAPT=(z T)

where X and Y are square. Suppose X is kxk. Then ^ijX^—k by

considering the first k row sums of PAPT. Considering the first k column

sums of PAPT we have 2¿,j*i3+Zt.;zti—^- Hence ]>,,,-z,i=0 and

PATT=(* y). Since X and Y are now doubly stochastic the theorem

follows by induction.

That (b) implies (a) is an application of Theorem 2.

Lemma 2. If A is an irreducible doubly stochastic matrix with a positive

main diagonal and i^j, then the following two statements are equivalent.

(a) A—OijEjj has doubly stochastic pattern.

(b) A—OijEjj is irreducible.

Proof. We first show that (a) implies (b). If A—auEa has doubly

stochastic pattern then by Lemma 1 it is irreducible or completely reduc-

ible. If A—atiEtj is completely reducible, then A is reducible. Hence

A—aaEu must be irreducible.

That (b) implies (a) is a consequence of Theorem 2.

Lemma 3. If A is a doubly stochastic matrix with positive main diagonal

then there is a doubly stochastic matrix B with the same 0-pattern as A

so that each main diagonal entry of B is larger than each nondiagonal entry

ofB.

Proof. Suppose / is some number so that 0 < / < 1. Then À A + ( 1 — X)I

is doubly stochastic with the same 0-pattern as A. Hence, for I sufficiently

small, Lemma 3 follows.
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We are now in a position to show how doubly stochastic matrices may

be used in the analysis of critical arcs in strongly connected digraphs.

Theorem 4. 777e arc xijfrom vertex v.¿ to vertex v¡ of a strongly con-

nected digraph G is critical if and only if there is not a doubly stochastic

model M of G with mu smaller than all other nonzero entries in M.

Proof. Suppose xu is not critical. Then G—xu is still strongly con-

nected. Hence there is a doubly stochastic model N=(nij) of G—xu. xu is

on an elementary circuit in G, say xi}, x}j, xh¡i, • • • , x¡ ¿. Suppose

£>0. Add £ to nu, n}j , ni ,- , •••,«_, ¿in TV and subtract s from nu, n5j,

ni í,' ' ' ■ » ni i m N yielding the matrix 7V' = («i;). For £ sufficiently small,

TV' is a doubly stochastic model of G and nu is smaller than all other

nonzero entries in M.

Suppose xi} is critical. Further suppose G has a doubly stochastic model

M so that m.u is smaller than all other nonzero entries in M. Subtract

m4i from mi4, mu , • ■ ■ , m¡ , in M and add mit to mu, mu, m, , , ■ • • ,

m¡ j in M yielding the matrix M'. M' is a doubly stochastic model of

G—xi}. Lemma 2 then implies that M' is irreducible. Hence G—xiS is

strongly connected. This contradicts the hypothesis that xu is critical.

Theorem 5. If G is a strongly connected digraph, then given any

elementary circuit C of G there is a nonempty set of arcs from C whose

removal from G leaves

(a) a strongly connected digraph, or

(b) a disjoint union of strongly connected digraphs.

Proof. Suppose the elementary circuit C contains the following arcs:

xt i , x{ * , ■ ■ ■ , x¡ i. Suppose M is a doubly stochastic model of G.

By Lemma 3 we may assume every entry mRR of M is larger than every

entry mu (i^j) of M. Now consider milt , mu¿3, • • • , w¡ , in M. Let m —

min[w, ,„, • • • , m, , 1. Now subtract m from each of m, . , m,-,■ , ■ ■ ■, m, ,
L       ti'2' * tiîil '1*2 l2(3 " H   \

in M and add m to mtlfl, muu, ■ ■ ■, mÍRÍ¡¡ in M. This results in a doubly

stochastic matrix M'. The result now follows from Theorem 3 and Lemma 1.

Note that the theorem does not imply that any of the arcs of C may be

arbitrarily chosen as can be seen by considering the example below :

X2

x     cCT-*-J^» X,

*4
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Let C:xXi, x43, x3X. The arcs xXi and x43 may be removed to yield two

disjoint strongly connected digraphs, i.e.

x2

Xl

XA

however, x3X may not be removed. An implication of this theorem is,

of course, that a minimally strongly connected digraph is the connection

through an elementary circuit of minimally strongly connected digraphs

with fewer vertices.

The next theorem of this section is also in [4, p. 18]; however, we feel

that our proof is the more elementary.

Theorem 6. Suppose G is a minimally connected digraph with symmetric

arcs xi} and xjt. If xtj and xH are removed from G yielding G', then G' is a

disjoint union of two strongly connected digraphs.

Proof. Let M be a doubly stochastic model of G. Suppose £ is a

positive number with 0<£<min[wo, mH]. Subtract e from mtj and mH in

M and add s to mu and m¡¡ in M. This yields a doubly stochastic matrix M'

which is a model for G. Further for sufficiently large s we see that m'a or

m'a is a smallest positive entry in M'. Without loss of generality suppose

m'a^m'ji. Since xu is critical, M'—m^E^ is reducible. Hence there is a

permutation matrix P so that P[M—m'ijEij]PT=(z y) where X and Y

are square. Suppose X is kxk. Then 2¿¿ xij=k—m'ij. Further 2« xa+

'¿.iizij=k. Hence ^ijZij=m'ij. Since m'a is in Z we see that Z has only

one positive entry. Hence the removal of xi} and xH from G results in two

disjoint digraphs. It is easily seen that these two digraphs are strongly

connected and hence the theorem is established.

We include the next two theorems to show some slightly different

techniques of argument in the use of doubly stochastic matrices.

Theorem 7. Suppose G is a strongly connected digraph with Cx and C2

elementary circuits of G. Suppose Cx and C2 have one and only one arc x

in common. Then there is a nonempty set of arcs S of Cx so that x $ S and

(a) G—S is a strongly connected digraph, or

(b) G—S is a disjoint union of strongly connected digraphs.
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Proof. Suppose M is a doubly stochastic model of G so that M is

nxn and m^m^ for all /', p, q e {1, 2, • • • , n} with p^q. Suppose

t-a^ijV *í2#s> x*it*i> Cz'-Xjih' xhU' ' ' ' ' xhh'      *

m = maxíw, , ,m, , ,• • • ,m¿ , }.

Now add m to m, , , m< , ,■ • ■ , m, , in M and subtract m from w,- ,■ ,

m¡ ¡ ,■ ■ ■ , m¡ j obtaining a doubly stochastic model M' of G. M' has

the property that max {mí ¡ , m¡j ,■■■ ,m'i ¿ }=m'ij where xió=x.

Further, m'^ is larger than every other number in {m^, m,'^, • • • , m'¡ ,■ }.

The result now follows by an argument similar to that of Theorem 5.

Theorem 8. If G isa strongly connected digraph and C a closed semipath

in G then there is a nonempty set of arcs S from C so that

(a) G—S is a strongly connected digraph, or

(b) G—S is a disjoint union of strongly connected digraphs.

Proof. Let M be a doubly stochastic model of G so that every main

diagonal entry is larger than every off diagonal entry. Let C:vt , x¡ ¡ ,v{,

Xn , • " , v,- , a, , , Vj where v, each is a vertex of G and x, , an arc

between y, and v¡ x (A:+l mod S). Consider the following entries in M:

{mi , where R e {1, 2, • • • , S\\\j{m, , if x, , is an arc into vfí and

Xf j an arc out of vR} — N. Now the entries of TV in M form a loop of

M:m, , ,m, u, M, t ,■ • ■ ,m, ,    ,m,    ,    ,m,    ,    =m      Again, without
'1*2'       ^'2' ï3'4' '        'r'r+l'       ír+2ír+l'       ir4-2*r+3 rlf2        Ö '

loss of generality we may assume m'mmi.ey{mij}=mhH. Subtract mhUfrom

each of m. ,, m. ,,••■, m, .     in M and add m, ,  to each of m. , , • • •,
'112 '        '3*4 'r'r+1 'l^ '3'2

w,r t i in A/ yielding the matrix M'. M' is now a doubly stochastic model

of G—5 and the result follows immediately.

The above two theorems may well shed some additional light on the

structure of minimally connected digraphs.

In conclusion we list [2], [7], and [9] as papers relevant to our topic.

Brualdi, in [2], gives an extensive discussion of the kinds of row and

column sums which can be obtained when the 0-pattern of a matrix is

specified. Sinkhorn and Knopp in [9] give an interesting substructure of

fully indecomposable matrices through the use of doubly stochastic

matrices.
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