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Abstract. Suppose/is a continuous complex valued function

defined on a compact set E in the plane and pn(f, E) is the poly-

nomial of degree « of best uniform approximation to/on E. If a

polynomial q„ of degree n approximates/on E "almost" as well as

p„(f, E), then q„ is "almost" p„(f, E). Sharp estimates, one for

the real and one for the general case, are found for \\qn—pÁf, E)\\E

in terms of the quantity (\\f-qn\\E-\\f-p„(f, E)\\E), where ||-||£

denotes the uniform norm on E.

1. Introduction. For a function / continuous on E, a compact set in

the plane, let \\f\\E=maxzeE |/(z)|. Also, for n eZ+, let />„(/, E) denote

the polynomial of degree n of best uniform approximation to / on E.

A basic question that arises in the theory of best approximation is:

If two continuous functions/ and/2 are "close" on E, are their poly-

nomials of best approximation pnif, E) and/>„(/,, E) also "close" on E.

More precisely, if {/m}m=i ¡s a sequence of continuous functions converg-

ing uniformly to / on E, does the sequence {pn(fm, F)}m=i converge

uniformly to pnif, E) on E (for each n) and if so, how rapid is the con-

vergence.

The above problem can be stated in even greater generality. Suppose

/is continuous on a compact set E, neZ+, pnif, E)=0, ||/||E=1 and

qn is a polynomial of degree n for which \\f— ̂ J|i;^l+e, where £>0.

Then, does \\qn\\E approach zero as £ approaches zero and if so is there

any relationship between their respective rates of convergence to zero.

For example, is ^qJ[K = Oieß) for some ß>0? We consider the real case

first.

2. The real case. Our problem in the real case was settled in 1958 by

G. Freud [4] who showed that \\qn\\ = Ois) where "Ö" depends only on

E and /. His result also holds for approximation by generalized real

valued polynomials (cf. Meinardus [1, p. 22]). We shall now state and

prove Freud's result for ordinary polynomials and in the process describe
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in some way how "O" depends on £ and/. Our proof shall also serve as a

motivation for the corresponding proof in the complex case.

Theorem 1. Suppose f is continuous and real valued on E, a compact

subset of the real line, pn(f, E)=0, ||/||E=1 andqn is a real polynomial of

degree n for which \\f—qn\\E<\+e where £>0. It then follows that

\\qn\\E = 0(s), where "0" depends only on E and f Furthermore this

estimate is sharp for each n.

Proof. By Chebyshev's Theorem [1, p. 20] there exist n+2 points

{xk}kt\ in E such that

Xi < x3 < • • • < xn+2,   and   f(xk) = -f(xk+1)

for k = 1,2, n + 1.

We may assume without loss  of generality that f(xk)=(— l)k, k=

1, 2, • • • , n + 2.  Let  w(x)=Ylk=i (*-*t)>  A/ = maxfc Iw'fx*.)!   and   m =

mim. |w'(xj|. We now claim that \qn(xk)\<(n+\)Mslm, for k=\, 2,

n+2.

If for some j, l^j^n+2, \qn{x¡)\\%(n+\)Ms¡n, then for some l^j,

l^/^n+2, |?7i(x;)|>£and

(1) sign
<7n0O'

-sign
Lw'(x,.).Lw'(x;)_

This follows, by Lagrange's interpolation formula since,

qn(x) = w(x) 2, ——-" =    2 -¿—\)X      + " ' '
*-i w (**)(* - xk)      \k=1 w (xk)J

and so 2*¿i an(xk)lw'(xk)=0, since qn is a polynomial of degree n. Now

by the hypothesis of our theorem, \f(xk)—qn(xk)\^l+e for k=l, 2,

n + 2 and so

(2)

sign[?K(x3.)] = sign[/(x3)] = sign[(-l)>],   and similarly,

sign[?B(jr,)] = sign[/(x,)] = sign[(-l)»].

If we let, l=t+j, then (-iy==(-l)'(-l)¿ and so by (2),

(3) sign^ixj] = sign[(-l)«f „(*,)].

However, sign[w'(xj.)] alternates on E and, in particular,

(4) sign[v/0c,)] = sign[(-l)V(x3)].
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Thus by (3) and (4) we get

sign
'qn(*îï

w'{x,).
= sign

9n(*j)'

-W'ÍXj).

thus contradicting (1). Hence our claim follows.

Now since E is compact, the functions {w(x)¡ix—xk)}ktl are uniformly

bounded on E, say by L, and so again using Lagrange's interpolation

formula we can write

k»(*)l
71+2

q„(xk)wix)

k=1 w'(x*)(x - xk)

in + 2)(n + l)MLe

= 2 qnjxk)wjx)

w'(xk)ix - xk)

for each x e E,
m

where M and m are as before. Hence our theorem follows.

In order to demonstrate that the estimate \\qn\\E=Oie) is sharp for

each n let 0^xx<x2<- ■ -<xn+2<\ and E={xk}kll^J{\}. Define the

function/on F by setting/(xi) = (—l)fc, k=\,- ■ ■ ,n+2, and/(l)=0,

and let qntix) = e2nix—\)n. Then/, E and qn i£ satisfy the conditions of

Theorem 1; however, \\q„J\K=\qn.e(\)\=s.

3. The complex case.

Theorem 2. Suppose f is continuous on E, a compact set in the plane,

n e Z+, pnif E)=0, \\f\\E= 1 and qn is a polynomial of degree n for which

\\f-q„\\E^\+s where 1>£>0. // then follows that \\qn\\E=Oisß), for

every /3<|-, where "O" depends only on E, f and ß. Furthermore this

estimate is sharp for each n in that it is not in general true for ß=\.

Proof. By the Remez condition [3, p. 437] there exists m distinct

points {zk}k=1 in E and m positive constants {Xk}k=1, 2n+3^.m^.n + 2,

such that

(i) \fizk)\ = 1    for k - I, 2, • • •, m,       and

00  ÍVtó"0,    for; = 0,1, •-,«.

In particular,

(5) 2 *«/(**>«»(**) = °-

Set pik=fizk) for k=\, 2, • • • , m and write qnizk)=i\+a.k)p,k+ißkfik,

k= 1, 2, ■ ■ • , m, where the at's and ßks are real. This can be done in a

unique manner. By the hypothesis of our theorem we have that

\<xkfik + ißkfik\ = 1 + £,   for k = 1, 2, • • • , m,
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so as a consequence

«it + ßl < 0 + £)%    ar>d i" particular,

(6) \y.k\<(\+s).

With this notation, the expression (5) can be rewritten

m

24« JO + «*K- + 'fVfc] = o.
A-=i

or
m m in

24 + 2 4«* +12 4& = o-
¡fc=I 1=1 fc=l

Equating real parts yields
■m m

(7) 24«*.=-24
i=l Jfc = l

We now claim that for any ß<\, |},(z()|<e', for k= I, 2, • ■ • , m, and

all polynomials qn satisfying the conditions of our theorem, if e is suffi-

ciently small. If for "sufficiently small" £ and some j, l^y'^w, \qn{z,)\>

sß, it will then follow that

(8) 1 + a, > (£2" - 2£ - £2)/2.

In order to demonstrate this we note that since \qr,(z])\ysß, we then have

that (l+ai)2+/?2>£2/;, and from (6) we have (1 + ef>a.*+ß% Combining

these two inequalities yields (8).

Now by (7) we have yk=1.k¥:j Vi=-2*"=i 4~Mi' and so

m m

2   4** ̂ 24 + a>4-
k=l;kjLj k=l

Recalling (6) that |at|<(l + £) for k—\, 2, ■ ■ ■ , m, we obtain

m ni

(i +£)  2  4 > 24 +Mi.
k=l-k-+i k=\

and so
m

(9) £   2    4 > (1 + «,)4 > W -2s- £2)/2.

This is impossible if £ is sufficiently small since 1—2/3<0; hence our

claim follows if we note that expression (9) does not depend on q„. As in

Theorem 1, we can complete our proof and show that \\qn\\j.:=0(eß) by

applying the Lagrange interpolation formula.

In order to demonstrate the sharpness of our result we construct for

each n eZ+ and each M>0 a set £ and a function / which satisfy the
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conditions of our theorem and then construct for every sufficiently small

£ a polynomial q„.ciz) of degree n for which 11/—<7„.J #= 1 + eand such that

\\qvJE^Ms^.

We choose n+2 points {zk}ktl such that if wiz)=Y\l=\ iz—zk),

71+2

I-h <2
fc-2 w (zk)

1

K(**)l
and let

(10)
tí   ^'(z,)

t„(z) = w(z) 2 ;
K(rt)|

,t2|w'(zt)|w'(zfc)(z-z,)

where ^=(2^=2 Uw'(zk))idl=\ ^l\w'(zk)\). The polynomial t„ is not

identically constant and so there exists z0, z0j¿zk, k= 1, 2, • • • , n+2, such

that |t„(z0)|>M+1. Let E={zk}kl+% and define a function / on E by

setting/(z0)=0 and fizk)=w'izk)l\w'izk)\ for k=\,2, ■ • ■ , n+2. It then

follows [2] that/>„(/, £)=0 and ||/||f;= 1.

Now for sufficiently small £, let a=a(w'(z1)/|H''(z1)|)-|-/è(vf'(z1)/|M''(z1)|),

where a= — (£ + £2)/2 and /> = (£—ö2)1/2. We define on,£ by setting

o„,£(z)=(z—Zi)aB_iU)+a, where a„_i is the polynomial of degree n—\

of best uniform approximation to the function if(z)—a)/(z—zx) on the set

{zA-}ib?2 with respect to the weight function \z—zj. That is, q,,^ minimizes

max  \zk - Zj| \(f(zk) - a)/(zt - zj - pn_j(zÄ)|
2S1-S71+2

for all polynomials pn_x of degree « — 1. Set

ik - Zil !(/(**) - «)/(z,¿„ =   max
2átSn+2

Zi) - 9n-i(z*)l-

Note that <3„ = max2SfcS„+2 \fizk)—qncizk)\, and so let us first show that

an<\+s. By applying the work [2] of Motzkin and Walsh, ó„ can be

calculated explicitly, in fact

'tí/(Zit) - a\   —2
à„ =

Vs vv'(zt) ;/ l^iw'^t)!/

1

w'(z»)

alàwïl)//\àivv'(zt)i/;c=2^'(z4)//   \^2|w'(zfc)|;

Now noting that 2£¿2 1/m/(zí.)=0 and by our choice of the zfc's we can

write

_.(f   M/(f _L_\ . KÄ) . „ + iabt

where l>a_0. Thus

(11) á2 = (1 + aa)2 + iabf < (1 + |a|)2 + fc2 = (1 + £)2-
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By our choice of the value qn.Azi)^ a straightforward calculation yields

02) \f(zx) - qn.t{Zl)\ = 1 + £.

Again by appealing to [2] we can calculate

<7n-i0) =
w(z)

2 -^t:-: - »o 2
(z  -  ZJU.j W'(ZS)(2  - Zk) k=2 |w'(zfc)| (Z - Zk)_\

where

0      \,f2   *'(**)   //\5lw'(**)l/'

Now by substituting the given values for/(zt) we obtain (z—z])^„_1(z) =

oct„(z). Hence,

ll?n.fb = \q,Azo)\ = Kzo - ¿i)<7„-i(z<>) + a|

= |ar„(z0)| - |a| = (A/ + 1) |a| - |a| = Me"*.

Also, |/(z0)—9n.£(z0)| = |^„,E(z0)|^l-(-£ iff is sufficiently small, and so by

(11) and (12) we get that \\f—qn.i\\E= ' +£ and our example is complete.

4. Remark. As a consequence of Theorem 2, if a function / is con-

tinuous on a compact set £ then for each /?< 2- and n eZ+, there exists a

least constant, M„, such that iiq„ is a polynomial of degree n for which

||/-9„||/.;<||/-/?„(/, £)||K (l+£), where 0<£<1, then

\\pn(f, E) - qJB = ||/ - pn(f, E)\\e M/.

Whether the sequence {A/„}™=0 is bounded for each/and £ remains open.

A similar question can be posed in the real case.
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