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A SYMMETRIC  STAR  BODY THAT TILES  BUT NOT

AS A LATTICE

SHERMAN  K.  STEIN

Abstract. A classical question in convex bodies runs as follows :

"If translates of a fixed convex body K in Euclidean space can be

packed with a certain density, is it possible to find a lattice packing

by translates of AT that is at least as dense?" This suggests a similar

question for star bodies, which is answered negatively in the

present paper. It is shown that there is a centrally-symmetric star

body that tiles ten-dimensional Euclidean space but does not tile

it in a lattice manner.

We shall construct a star body that tiles Euclidean space A10 but not

as a lattice. This body consists essentially of 81 unit cubes arranged in the

form of a cross that has a central cube from which emanates, at each of

its twenty nine-dimensional facets, an arm composed of four cubes. This

body is symmetric with respect to the center of its central cube and with

respect to the interchange of axes.

I. Preliminaries. Let Rn denote «-dimensional Euclidean space, con-

sisting of the points (xlt • • • , x„), x¡ G Rl. A set K^Rn, homeomorphic

to the «-cell, we shall call a star body if there is a point in A from which all

of K is visible; more precisely, if there is a point A e A such that for every

point Be K the chord AB lies in A. In particular any convex body is a

star body.

Let V={v!, v2, ■ ■ ■ , v„, ■ ■ •}, where ^ = (0, 0, • • • , 0), be a set of vec-

tors in Rn with the property that for ijij the interior of v{+ K is disjoint

from the interior of v¿ + K. The family vx+K, v2+K, • • • is called a packing

of Rn by translates of A. If, furthermore, A"=U¿ (f¿ + A), then the

packing is called a tiling of Rn. If the set V forms a lattice (a subgroup of

R" without limit points) then one speaks of a lattice packing or lattice

tiling by translates of A. This topic is surveyed by C. A. Rogers in [2,

pp. 1-20] in case A is a convex body. No example is known of a convex

body whose translates can be packed more densely then they can be as a

lattice.
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The assertion that, for/'?£/, the interiors of v, + Kand Vj+Kare disjoint

is equivalent to the assertion that vi is the only element of V in the interior

of Vi+\i-K)+K\, where -K={-x\x g K) and

i-K) + K= {x +y\xG-K,yGK}.

This suggests the question of determining, for a set K'<^Rn, how dense a

lattice V={vx, v2, ■ ■ ■} exists such that for each/ v} is the only member

of vx, v2, ■ ■ ■ in the interior of Vj+K'. Since not every star body /¿'is of the

form ( — K)+K for some set K, the first problem, concerning tiling, even

for star bodies is more general than the second. Zassenhaus in [6] surveys

results on the second problem. Wolff in [4] constructs a star body K' in

R2, symmetric with respect to the origin, such that lattices do not provide

the densest set V for the second problem.

We shall construct a star body K in R10, symmetric with respect to the

origin, such that translates of K tile 510 but there is no lattice tiling of 510

by translates of K. This body is a special instance of a (¿V, «)-cross with

notches. A ik, «)-cross, introduced in [3], is defined as follows. For any

positive integer k and Euclidean space 5", a ik, n)-cross consists of

2kn + \ parallel unit cubes, one central cube together with an arm of

length k stuck onto each of the 2« facets of the central cube. More pre-

cisely, it is a translate of the set of unit cubes parallel to the axes and whose

centers are at

(0, 0, • • • , 0), (±i, 0, ■ • • , 0), (0, ±i, 0, • • • , 0), • • ■ , (0, 0, • - - , ±i),

i=l, 2, ■ ■ • , k. Observe that a ik, «)-cross is centrally symmetric.

It is trivial to check that a (/c, l)-cross (i.e., an interval of length 1 +2k)

tiles 51, and only as a lattice. Similarly, in R2, it is easy to see that the

(1, 2)-cross tiles, but only as a lattice; no other ik, 2)-cross tiles R2. In 53

both the (1, 3)-cross and the (2, 3)-cross tile, but only as a lattice. No other

ik, 3)-crosses tile Rs. However, as we have mentioned, the (4, 10)-cross

tiles 510 but not as a lattice. Whether ten is the smallest dimension at

which this phenomenon occurs is not known. The proof rests on two

lemmas.

2. Two lemmas. Let S be a set of q elements and S" = SxSx- • -xS

be the Cartesian product of n copies of S, «^3. A subset M of Sn is

called a perfect cover of Sn if each element of Sn differs from exactly one

member of M in at most one coordinate. (A set of chess "rooks" placed

at the elements of M attack each element in Sn exactly once.)

Lemma 1 (Zaremba [5]). Let q be a power of a prime, r an integer

5:2, andn — iqT— \)\iq—\). Then there is a perfect cover ofSn, and it consists

ofqn~r elements.
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For a shorter proof see [1].

Let G be a group and A and B be subsets of G. If each element of G is

uniquely expressible in the form ab, a e A, b e B, G is called the product

of A and B. G is also said to be factored by the subsets A and B.

The next lemma enables us to lift a factoring from a group G* to any

group G of which G* is a homomorphic image.

Lemma 2. Let the group G* be the product of subsets A * and B*. Let G

be another group andf:G->G* be a homomorphism from G onto G*. Let

A be any subset of G such that the restriction off to A is a bijection between

A and A*. Let B=f~1{B*). Then G is the product of A and B.

Proof. We first show that any element in G is of the form ab. For

x e G consider fix)=a*b*, a* e A* and b* g B*. Select ae A such that

fia) = a*. Then fia~1x) = ia*)~1a*b*=b*. Hence ar1x is an element b in B.

Thus x=ab.

We next establish uniqueness. Let a1b1=a2b2, where a,, a2 are in A

and b1, b., are in B. Then

/(ûA)=/(flA)   or  /(«O/i*!) -fiflùfibà.
Since G* is the product of A* and B*,fial)=fia2), and therefore a1 = a2.

Cancellation yields b1=b.2. This proves Lemma 2.

3. Proof of the theorem. The two lemmas, combined with the following

observations, easily yield a proof of the theorem. Consider a tiling of A"

by crosses whose arms are parallel to the axes. It is not clear whether, for

each /', 1^/^«, the ¿th coordinate of any two crosses in the tiling differ

by an integer. In order to be sure that the /th coordinates do differ by an

integer we notch the crosses in the manner indicated in the following

diagram. This notching can be done in such a way that the notched cross

is a centrally symmetric star body; as notches use a shallow cap of a

sphere.

"XT- W

^ r\

XT— W
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Place the centers of the notch and dent on the facets perpendicular to the

x,-axis in such a way that they determine a line parallel to the x¿+1-axis,

/"= 1, 2, • • • , n, where xn+1 is interpreted to be xx.

Theorem.    The notched (4, I0)-cross tiles R10, but not as a lattice.

Proof. Lemma 1 with q=3°- and n=iq2-\)Hq-\)=q+1 =32+1 = 10

shows that for a set S with nine elements, the set S10 has a perfect cover,

M. Now let 5 be Z9=Z/(9Z), the cyclic group of order nine. For z e Z let

f denote the element z+9Z of Z9. Then S10 forms a group, Z9xZ9x-••

XZ9, which we denote G*. Let /Í * = {(Ö\ Ö, • • - ,Ö)}u{(±z, Ö, Ö, • • •, Ö)}u

{(Ö, ±f, Ö, ••• ,Ö)}U---U{(0,0, ■ ■ • , ±f)}, l<;z^4. A* has 81 ele-

ments. Let B* = M. Since M is a perfect cover of S10, G* is the product

of A* and 5*.

Let/be the homomorphism/:Z10—>-Zj0 defined by

fizx, z2, ■ ■ ■ , z10) = izx, z2, ■ • - , f10).

Let A cZ10 be the 81 lattice points that are the centers of the cubes of the

(4, 10)-cross whose center is at the origin of 510. Clearly/[/l is a bijection

between A and A*. By Lemma 2, Z10 is the product of A and/_1(5*).

Consequently, the (4, 10)-cross tiles 510. Hence the notched (4, 10)-cross

tiles 510.

Next we show that the notched (4, 10)-cross does not tile 510 as a lattice.

Assume that 510 is tiled in a lattice manner by translates of the notched

(4, 10)-cross. The notching of the crosses forces their centers to have

integer coordinates. Thus Z10 would be the product of the set A con-

sisting of the 81 elements described above and a subgroup H of Z10. Let

h:Z10->-Z10¡Hbe; the natural homomorphism. Observe that ZW\Hhas order

81 and that /?|A is a bijection from A toZ10///. Letg, eZ10///,/=1, 2,

10, be hief), where e¿ is a basic unit vector in Z10, (0, 0, • • • , 1, • • • , 0),

a 1 in the /th place. Thus the 80 nonzero elements Z10/// are ±g,-, ±2g¿,

±3g,, ±4g,, /= 1, 2, • • • , 10. Clearly, the order of each g¡ is at least 9.

Now the group Z10¡H is either Z3xZ3xZ3xZ3, Z9xZ9, Z21xZ3,

Z9xZ3xZ3 or Z81. The case Z3xZ3xZ3xZ3 is ruled out since all of its

elements have order less than 9. The case Z9 X Z9 is out since each g¿ would

have order 9; the 20 element ±3g, would have order 3. But there are only

eight elements of order 3 in Z9xZ9. To rule out Z27xZ3 note that Z21xZ3

has eight elements of order 3. Thus, four of the elements of gx, ■ ■ ■ , gx0,

say gx, go, g3, g*, have order 9, and ±3^, ±3g2, ±3g3, ±3gi are the eight

elements of order 3. Then the 24 elements ±g,, ±2gn ±4g¿, i= 1, 2, 3, 4,

are of order 9. However Z27xZ3 has only 18 elements of order 9. To rule

out Z9xZ3xZ3, note that Z9xZ3xZ3 has 26 elements of order 3, but

only the 20 elements, ±3gl5 ±3g2, • • • , ±3g10, may be of order 3. The
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case Z81 can be ruled out as follows. ConsideringZ81 as the set {0, 1,2, • ■ -,

80} under addition modulo 81, let G81={/'|l</^80, (/, 81)= 1}, a subset

containing y(34) = 54 elements, but not closed under addition. It is no

restriction to assume that gi—l. If

10

Zai - W = U {±gt, ±2g„ ±3gi, ±4gl},

then G81, regarded as a group under multiplication modulo 81 may be

assumed to be the product of {gx, g2, • ■ ■ , g9] and {±1, ±2, ±4}. It is

then easy to show that the set {gt, g2, ■ • • , g9} is, up to changes of sign,

{8°, 81, • • • , 88}. But 3-8°=3 1=3 while (-3) • 83=( —3)(26) = 3.

Thus 3 • 8° = ( —3) • 83 and the alleged decomposition of Z81 cannot exist.

Hence there is no lattice tiling of A10 by notched (4, 10)-crosses. This

completes the proof of the theorem.

4. Remarks. The tiling constructed for the notched (4, 10)-cross is

what Zassenhaus in [6] calls a tiling using a "lattice with a base", that is,

the union of a finite number of translates of a lattice. It is further evidence

in favor of an affirmative answer to his question: "Is it reasonable to

assume that lattices with a base form a pattern of optimal packings?"

A similar argument shows that the notched (3, 5)-semicross tiles A5

but not as a lattice. The (3, 5)-semicross, defined in [3], consists of a unit

cube with arms of length three stuck on one of each pair of opposite

facets. It is made up of 16 cubes and is not centrally-symmetric.

It may be that the notches are not necessary to insure that the coordi-

nates of centers differ by integers in the case of crosses. However, the

(1, 3)-semicross can tile A3 in such a way that the coordinates of the centers

do not differ by integers. A (1, 3)-semicross S consists of translates of the

four unit cubes whose centers are at (0,0,0), (1,0,0), (0,1,0) and

(0,0, 1). Consider the set of translates v + S where v is of the form

in, —n, n + 2t) or («7+1, — m+1, m+2s) where m, n, s, t run through all

integers. The union of these translates is a cylinder in the form of a wall

four cubes thick with generator parallel to the x3-axis. Copies of this wall

tile A3, and can be moved parallel to the x3-axis independently of each

other.
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