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A  CHARACTERIZATION  OF HILBERT MODULES1

GEORGE  R.  GIELLIS

Abstract. For a proper /i*-algebra A, the relationship

between ""-representations of A and Hubert modules is discussed.

It is shown that a Hubert module structure can be defined on every

essential*-representation of A.

1. Introduction. A Hubert module is a right module H over a proper

i/*-algebra A, with a vector inner product (•, •) mapping Hx H into the

trace class of A, where (•, ■) has certain properties analogous to a scalar

valued inner product for a Hubert space. P. P. Saworotnow [2] intro-

duced the concept of a Hubert module and showed that a linear space

structure can be defined on H. Moreover, he proved that the vector inner

product for H generates a Hubert space inner product for H.

Of course, the right module structure means that an element a of A

can be represented as an operator n(a) on H. The Hubert space structure

induced on H is such that each 77(a) is linear with adjoint 7r(a*). In the

terminology of [1], we have an essential ^representation of the //*-algebra

A on the Hubert space H, with the understanding that the representation

is given by an antihomomorphism because of the right module structure.

The purpose of this paper is to show that the reverse process can be

carried out. That is, given an essential ^representation of a proper H*-

algebra i on a Hubert space H, then a vector inner product can be

defined for H such that H is a Hubert module over A.

2. Definitions and notation. Throughout this paper A will denote a

proper //*-aIgebra, with trace class r(A) = {ab\a, b e A}. A projection in A

is a nonzero selfadjoint idempotent element of A. By an orthogonal

projection base (OPB) for A is meant a maximal family of mutually

orthogonal projections in A. If {ea} is an OPB, then A = @~£xAex =

®I.exA.
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It is shown in [3] that t(A) is a 2-sided ideal in A. In fact, r(A) is a

Banach algebra with respect to the trace norm defined below. The trace

functional on t(A) is denoted as tr(-). We have tr(ab)=[a, b*] —

2a [obea, eA where [•, •] is the Hubert space inner product for A and {ea}

is an OPB. The trace norm t(-) on r(A) is defined by r(x)=tr([x]), where

[x]2=x*x.

Definition. A right module H over A is called a Hubert module if

there exists a r(/i)-valued function (•, •) defined on HxH with the

following properties:

(1) (f+g, h)=(f, h)+(g, h) for all/, g,heH.
(2) (f,g)* = (g,f) for all f, g eH.
(3) (/, go) = (f, g)a for all/, g 6 H and each a e A.

(4) For each nonzero/e H there exists a#0 in A such that (f,f)=a*a.

(5) |tr(/ g)\^r(f,f)r(g, g) for all/, g e //.
(6) // is complete with respect to the metric

d(fg) = M(f-g,f-g)))m = r((f-g,f- g))"2.

We can assume that a scalar multiplication is defined on H such that

X(fa)=(Xf)a=f(?M) for all complex numbers X, fe H and aeA. The

equation [/, g]=tr((g,/)) (f,geH) defines the Hubert space inner

product referred to above. A detailed discussion of Hubert modules may

be found in [2].

3. The characterization theorem.

Theorem. Let K be a Hubert space which is a right module over A

with the following properties:

(1) f (Xa) = X(fa) = (Xf)a for all complex numbers X,fe K and a e A.

(2) [fa,g] = [f,ga*]for allf geKandaeA.
(3) Iffa=0for all a e A thenf=0.

Then K is a Hilbert module over A.

Remarks. Notice that if K were a left module over A, the conditions

of the theorem would be that A have an essential ^representation on K.

Since any ""-representation of a Banach *-algebra is continuous (Theorem

4.1.20 of [1]), we know there exists a constant m such that ||/fl||5j

m\\f\\ \a\ for all/e KzndaeA.

Lemma.    Let {ex} be an OPB for A. Then f="Zafea, for allfe K.

Proof. Let J be any finite set of indices a. Then f-^-^x€jfea is clearly

a projection operator on K, which implies that

3iJ
2 A« " = 2 HA«2 ̂ ii/ii2

aej
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Thus the series of orthogonal terms fea converges to an element/' of K.

Since each aeA can be written as a=^!lleaa, by continuity we have

fa=f'a for all as A. Thus/=/'.
Proof of the Theorem. For fsK, let T, denote the map a^fa.

Then Tf is a bounded operator from A to K and a simple calculation shows

that T*(ga)=(Tfg)a for all/, g e K and a s A. Let b-Tf(f). Then
T?Tf(x)=bx for all x e ,4. This means that b is a positive element of A.

If K} is an OPB for A, then 2, [be,, ex] = 2a [fea,fea]=\\f\\2. By Lemma
3 of [3], the convergence of the series implies that b s t(A). Since b is a

positive element of t(A), there exists a selfadjoint c s A, such that c2=6.

We define a vector inner product for K by the equation (/, g) = T*(g)

(f g s K). Since Tf(g) can be expressed as a linear combination of four

terms of the form T*(h), we have (/, g) s t(A). It is clear from the defini-

tion and the above discussion that conditions (l)-(4) of the Hubert

module definition are satisfied.

Finally, consider an OPB {ea} for A. For /, g s K, tr((/, g)) =

I.ATf(g)ex,ex]=2a[gecl,feI}=[g,f]. Thus conditions (5) and (6) are

satisfied, since (5) is the Cauchy-Schwartz inequality and (6) requires

completeness of the Hubert space norm for K.
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