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Abstract. Let E and F be Banach spaces, E®F their algebraic

tensor product, and E®xFthe completion of E®F with respect

to a uniform crossnorm a^A (where X is the "least", and y the

greatest, crossnorm). In §2 we characterize the relatively compact

subsets of E®x Fas those which, considered as spaces of operators

from E* to Fand from F* to E, take the unit balls in E* and in F*

to relatively compact sets in Fand E, respectively. In §3 we prove

that if Tl:E1^-Es and 7,2:F1->-F2 are compact operators then

Ti ®x T2 and 7", ®y F2 are each compact, and results concerning

the problem for an arbitrary crossnorm <x are also given. Schatten

has characterized (E®XF)* as a certain space of operators of

"finite a-norm". In §4 we show that a space of operators has such a

representation if and only if its unit ball is weak operator compact.

1. Introduction. Throughout this paper E and F will denote Banach

spaces, E®F their algebraic tensor product, and £ ®x F the completion

of E®F with respect to a uniform crossnorm a^/l (see [6] for notation

and definitions used without other reference). Here A will denote the

"least" crossnorm and y the greatest crossnorm [6].

In §2 we give a characterization of the relatively compact subsets of

E ®x F. The characterization is given in operator terms, regarding

E ® k F as both a space of compact operators from E* to F and one from

F* to E.

If TX:EX-^E2 and T2:FX-^F2 are continuous linear operators then the

tensor product maps T1®xT2:Ex®¿Fx—>-E2®zF2 and Tx®yT2:

Ex ®y Fx-^-E2 ®y F2 are each continuous. A question of considerable

interest and importance in the theory of tensor products is the degree to

which properties of the operators Tx and T2 carry over to the tensor

product mappings (for results in this area see [1], [2], [4], and [5]). In

§3 we show that if Tx and T2 are compact operators then Tx ®x T2 and

7\ 0y T2 are also compact. A number of results concerning the more

general situation in which a is any crossnorm for which Tx ®x T2 is con-

tinuous are also given.

Received by the editors February 8, 1972.

AMS 1970 subject classifications. Primary 46B05, 47D15.

Key words and phrases. Tensor product, space of operators, compact operator, weak

operator topology.
© American Mathematical Society 1973

398



compactness in topological TENSOR PRODUCTS 399

In §4 we consider the representation of Banach spaces of operators as

duals of tensor products. Let &(E, F) denote the space of all continuous

linear operators from Eto F with norm given by || T\\ =sup||I||=1 || Tx\\. A

linear subset A(E,F) of ££(E,F) which contains all finite-dimensional

operators is called a Banach space of operators (or simply an operator

space) if (i) A (E, F) is a .B-space under some norm which we call the ,4-norm

on A(E, F) and denote by \\-\\A, and (ii) if Te A(E, F) then ||71^||r||,
with equality holding for all one-dimensional operators. Schatten has

shown that if a^A is a crossnorm on E®Fthen (E ®a F)* can be identified

in a natural way with an operator space A(E, F*) [6]. In §4 we show that a

given operator space A(E, F*) can be represented in the form (E ®aF)*

for some a^l if and only if the unit ball in A(E, F*) is compact in the

weak operator topology on A(E, F*).

2. In this section we will characterize the relatively compact subsets of

E ®x F. To state this characterization in operator terms we recall that the

space E ®XF may be identified (in the obvious way) with the space of all

compact operators from E* to F which are continuous in the w*-topology

on E* and the weak topology on F (of course, the same is true with the

roles of E and F reversed) [3]. We will accordingly denote by Fan element

of E ®x F, thinking of it as an operator from E* to F. Its adjoint

F*:F*->-£ is associated with the same element of E®XF, of course.

Let U° be the unit ball in E* and Vo the unit ball in F*.

Theorem 1. A set A c E ®x F is relatively compact if and only if each

of the sets A(U°) = {Tf\TeA, feU0}cF and A(V°)={T*g\TeA,
g e V°}<=E is relatively compact.

Proof. There is a natural embedding of E®XF into C(U°xV°)

(where IIo X Vo has the product of the w*-topoIogies on U° and Vo) ob-

tained by embedding E^C(U°), F-^C(V°) and E ®x F-+C(U°) ®x C(V°)=
C(U°x Vo) [2]. Thus by Ascoli's theorem, to show A c £ ®x F is relatively

compact we need only show that as a family of functions in C(U°x Vo) it

is equicontinuous.

Let £>0 and (/0, g0) e U°x Vo. Since by assumption the sets A(U°) and

A(V°) are relatively compact and hence totally bounded there exist

(j¿)Lic A(U°) and (x,)tic^(F°) each of which is an e/6-net in the

respective sets.

If

N(f0) = {/e I/» I \(f, Xj) - </0, Xj)\ < s/6,7 . 1, 2, • • • , m}

and

N{g0) = {g 6 v° | Kg,yù - (go,yi)\ < e/6, i - 1,2, • •., «}
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are w*-neighborhoods of /0 and g0 respectively then for any (f, g) e

N(f0)xN(g0) and any Te A,

(2.1)   \(Tf,g) - <F/0,£0>| ̂ \{Tf,g) - (Tf,g0)\ + \(Tf,g0) - (Tf0,g0)\.

Now (j¿)Li is an e/6-net for A(U°) so there is ayk for which || Tf—yk\\ <e/6.

Similarly there is an xv for which ||r*g0—Xj,||<e/6. Hence

\{Tf,g) - (Tf,g0)\ ^ \(Tf,g) - (yk,g)\ + \{yk,g) - (yk,g0)\

(2-2) +\(yk,go)-(Tf,g0}\

< e/6 + e/6 + e/6 = e/2.
Similarly,

(r/0,fo>l = li/;^o)-(/o»^0)|

^ i</, T*go) - (/, x„>i + \{f, xv) - </0, jc„>¡

+ \(fo^v)-(fo,T*go)\

< e/6 + e/6 + e/6 = e/2.

Combining (2.1), (2.2) and (2.3) we have that if (fig) e N(f0)xN(g0)
and T e A then

\(Tf,g)-(Tf0,g0)\<e.

By definition, then, A is an equicontinuous subset of C(U°x Vo) and is

therefore relatively compact.

Conversely, suppose AczE ®x F is relatively compact. Then given e>0

there is an e/2-net (Tz)r¡=x<^A. Since each Ti is a compact operator from

E* to F, the sets T^U0)^ F are each relatively compact and hence totally

bounded. Correspondingly, for each l^i^n there exists a sequence

(yf)7=i c 7*i(i/°) which is an e/2-net for r¿(í/°).

We claim that the set B={yf\\<i^n, \^j^m(i)}<=:A(U0) is an e-net

for A(U°). For, if T e A then there exists a 1 ̂ k^n for which || F- FJ <e/2.

If fell0 then \\Tkf-Tf\\<s¡2 and there is a l<=p^m(k) for which
IIrj"-/*,*'||<e/2. It follows that HÍJ-^IKe and £ is an e-net for

T(U°).
In the same way A(V°) is relatively compact and the proof is concluded.

Recall that if either E* or F has the approximation property then

E* ®A F can be identified with the space K(E, F) of all compact operators

from £ to F [2].

Corollary. If either E* or F has the approximation property then a

subset AczK(E, F) is relatively compact o each of the sets A(U0) —

{Tx\TeA,xeU=unit ball of E} and A(V°)={T*g\Te A,g e V°=unit

ball of F*} are relatively compact.

W,g0)-

(2.3)
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3. Let Tx:Ex-^-E2 and T2:Fx—>-F2 be continuous linear operators. The

operator defined on EX®E2 by

Tx © To ¡2 Xi ® y\ = 2 TlXi ® T2y,
\f=i '      z=i

is called the tensor product operator. If a is a ®-norm (in the terminology

of Grothendieck [3]) then TX®T2 is continuous and may therefore be

extended to the operator F, ®a T2:E1 ®XFX--E2®XF2. In the study of

tensor product spaces it is often necessary to know whether certain prop-

erties of the operators F, and T2 are inherited by their tensor product.

While this is often the case there are numerous exceptions ([2], [4], [5]).

In this section we show that compactness of the operators Tx and T2

carries over to Tx ®x T2 for ¡x=À and a=y. Several remarks concerning

the problem for arbitrary ©-norms are also given.

Theorem 2. Let F, : EX-*E2 and T2 : FX-*F2 be compact linear operators.

Then F, ®x T2:EX ®x Fx-+E2 ®XF2 is compact.

Proof. Let U° and Vo denote the unit balls in £* and F*, respectively.

Then, as is well known, we can embed £2 in /°°(i/0) and F2 in lx(V°) under

the mappingsjx: E^l™ (U°) and j2:F^l™(Vo).

Let S'1«/1-r1 and S2=j2-T2. Then Sx e K(EX, lx(U0)) and S2e

K(FX, lx(V0)), so since each of lx(U°) and /°°(K°) has the approximation

property [2] there exist sequences (Pn)^^(Ex, lœ(U0)) and (Qn)<=

y?(Fx, /co(K0)) of finite-dimensional operators whose norms are uniformly

bounded and for which \\Sx-PJ^n0 and \\S2-QJ-+n0. Then (Pn ®x Qn)

is a sequence of finite-dimensional operators on Ex ®x Fx into /°°(C/0) ®x

lx(V°) for which

lISi &;. St - P„ ®i QA ^ \\SX ®x S2 - Pn ®x S2\

+ \\P« ®x S2 - Pn ®x ßJI

^ ||S2|| \\SX-PJ + \\PJ \\S2-QJ.

Since supr¿ \\Pn\\ < + co this last goes to zero with n, showing that Sx ®x S2

can be approximated arbitrarily closely in operator norm by finite-

dimensional maps and hence is compact.

But Sx ®; S2=(jx ®x j2) ■ (Tx ®x T2) and it is well known that/ ®x y'2is

an isometry. Therefore Tx ®x T2 is also compact.

Remark 1. It is clear from the proof of Theorem 2 that the theorem

holds for any ®-norm a for which / ®¿ j2 is an isometry (or even an

isomorphism).

Remark 2. It is also clear from the proof of Theorem 2 that if both

Tx and T2 can be approximated arbitrarily closely by finite-dimensional
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operators then the theorem holds for any ®-norm. This will be the case,

then, if one of £, or £2 and one of Fx or F2 has the approximation property.

Theorem 3. Let Tx : Ex—>-E2 and T2 : Fx—>-F2 be compact linear operators.

Then T1®yT2:E1®y Fx-^>-E2 ®y F2 is compact.

Proof. It is clear we need only show Tx®T2:Ex®Fx-^>-E2®y F2 is

compact. Let (Zk) be a y-bounded sequence in EX®FX, say Zk—

2?ia' x{k)®y[k) for k=\, 2, • • •. We want to show that a subsequence of

(TZk) converges in £2 ®7 F2.

To do this, note first that for any k and p,

|| Tx ® T2(Zk) - Tx ® T2(ZV)||„ = sup |(Zk - Z„, TÏSTj |
||S||=i;Se^(E2.i,2*)

by [6] and the definition of TX®T2. Hence we will be able to invoke Ascoli's

theorem to obtain the desired result if the set A—{T*STX\S e i?(£2, £*)

with ||5||^1} is relatively compact in &(EX, F*)=(EX ®y Fx)* (since (Zk)

is an equicontinuous subset of C(A)).

Let {T*SnTx} be a sequence in A. For any n, m,

\\nSnTx - T2*Smrj = ||T2*(5„ - 5JFJ

sup |(F2*(Sn - Sm)Txx, y)\
11*11-1.*««,: Ilvn-i.twi",

sup \{Sn-SmT1x,T2y)\.
||*||-l.*eB,:  ||v||-l.«ef,

Again, since (5„) is an equicontinuous subset of (£2 ®y F2)*, our theorem

will be proved if the set F1(C/)®F2(K)={F1x®r2j| ||jc||S1, lljll^l} is
relatively compact in £2 ®y F2. But this is immediate since if (^„©F^'J

is a sequence in TX(U)®T2(V), then by virtue of the fact that each of Tx

and T2 is compact there exist subsequences (Txxn¡) and (T2yn¡) which

converge in £2 and F2, respectively, and hence for which (Txxnk®T2yn¡)

also converges. The theorem is proved.

In view of Remark 2 following Theorem 2 it is, of course, very likely

that the tensor product Tx ®x F2 of compact operators is compact for

every ®-norm a (we continue to require a to be a ®-norm only to insure

that Tx ®x T2 is continuous). The next theorem shows that the problem

may be reduced to that of showing that one certain type of tensor product

map is compact.

Let £ and F be Banach spaces and (fn)<=E*, (gn)<=F* sequences for

which ||/J|->0, ||gB||-»-0. Define the mappings TeK(E,c0) and Se
K(F, c0) by

(3.1) £*=«/„,*»,       Sy = ((gn,y)).
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If A'=closure of the range of F and y=closure of the range of S then

TeK(E, X) and S eK(F, Y).

Theorem 4. Let a be a ®-norm such that whenever T e K(E, X) and

S 6 K(F, Y) are as above then T ®x S:E ®XF-*X®X Y is a compact

operator. Then if Tx:Ex—>-E2 and T2:Fx—>-F2 are compact operators the

tensor product F, ®x T2 is also compact.

Proof. It is known that since Tx and F2 are compact there exist

sequences (/„)<=£? and (#„)<=£* such that ||/„||-*0, \\gJ->0 and

\\Txx\\^supn\(fn,x)\ for all x e Ex, \\T2y\\<supn\(gn,y)\ for all yeFx

m
Thus Tx may be factored as TX=P2 ■ Px where Px(x)=((fn, x)) e X<= C0

for all xeEx and P2:X-^E2 is defined by P2((fn, x)) = Txx. Similarly F2

can be factored as 7"2=g2-r2i where Qx(y)=({gn,y))e Y<z:C0 for

yeFx and Q2: Y->F2 is defined by Q2((gn,y))=T2y.

Since T1®XT2=(P2®XQ2)-(PX®XQX), where PX®XQ1:E1®XFX-+

X ®XY and 7>2 ®a Q2:X ®x Y^>E2 ®x F2, and by assumption Px ®a Q2 is

compact, we see that F, ®a T2 is also compact.

Remark 3. If one could show that the sets X and Y occurring in the

above theorem have the approximation property then Theorem 4 together

with Remark 2 would prove the result for all a.

4. If £ and F are Banach spaces and a a crossnorm on £®£ then

according to results of Schatten the space (£ ®a £)* can be identified with

the Banach space AX(E, F*) of all operators from £ to £* of "finite

a-norm" [6]. In this section we study the converse problem, that of

determining when a given space of operators A(E, £*) is (under the

identification given by Schatten) a space Aa(E, F*)=(E ®x £)* for some

crossnorm a.

The definition of a Banach space of operators A(E, F*) was given in §1.

By the weak operator topology on A(E, £*) we mean the topology of

pointwise convergence of nets in A(E, F*) on the set £x£ (or, equiva-

lent^, on E®F^A(E, £*)*).

We begin with a simple lemma. We emphasize that the embedding

mentioned in the lemma (and denoted by the inclusion symbol) refers, as

do similar embeddings throughout this section, to a very special em-

bedding (namely, that of Schatten) which is explicitly defined in the proof

of the lemma.

Lemma.   If A(E, £*) is an operator space and a is defined on E®F by

«Í2x¿® ya 2 <Tx¿> y¿
¡=i

then a is a crossnorm and E ®a F<^A(E, £*)*.

:   sup
|[2MU=i
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Proof. If Jj¡=xxi®yieE®F then for TeA(E,F*) the equation

(T,27=iXi®yi)='ZLi(Txi,yi) identifies the tensor ILi**®^ with a
linear functional on A(E, F*). If(Tm) is a sequence in A(E, F*) converging

in ,4-norm to zero them (Fm) also converges to zero in operator norm

(since ||riU^||71 for TeA(E,F*)), implying Iti (Tmx{,y^m0 and

the functional 2?=i *¿®J¿ is continuous on A(E, F*). Therefore we can

identify in a canonical fashion the algebraic tensor product £®F with a

linear subspace of A(E, F*)*. If we define

ai2xi®^) sup
|T|U=i

2 (Tx,, yz)

then a is simply the norm induced on £®£ considered as a subspace of

A(E, F*)* and so the embedding £ ®x F-+A(E, F*)* is an isometry.

Moreover if x®y e £®£ then

a(x® y) =   sup  (Tx,y) < sup (Tx,y) < ||x|| ||j||.
im^-i !irn=i

Conversely,

a(x ® y) ^     sup
ll/ll=IMI =

<x®j>,/®g> = ||x|| \\y\\

since by assumption A(E, £*) contains all finite-dimensional operators

and the A-norm of the one-dimensional operator/®^ is equal to ||/®g|| =

11/11 • ||g||. It follows that a is a crossnorm and the lemma is proved.

Remark.    Though we will not need the result in what follows, the cross-

norm a defined above is >A. To see this note that

(n \ / n \

2 xi ® yi) = sup (2 xi ® y*>T
,=i /      liriu-i\<_i /

>     sup    (2^®>'i./®g

(as in the proof of the lemma)

2 xi ®

Using this lemma we now prove the converse to Schatten's theorem.

Theorem 5. Let A(E, £*) be an operator space. Then there is a cross-

norm cil for which A(E, F*) = (E ®x F) * if and only if whenever T e 3C(E, F*)

is the weak operator limit of a net (Ty) in A(E, F*)for which sup, ||FV||^<

+ 00 then TeA(E, F*) and ||F||^sup7 \\Ty\\A.
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Proof. Suppose A(E, F*)—Aa(E, £*)=(£ ®XF)* for some cross-

norm a and F e &(E, F*) is the weak operator limit of the net (Ty) in

A(E, £*) for which supy \\TJA = M< + oo.

If Z"=i *<®.Vi G £ ®a £ and e>0 then there is a y0 for which

Hence

n n

2 {Txí, yt) - 2 \TjXit y¡><E.

Tl Tl

2(TXi, yx) <   2 íT7oxi> y¿ + e

á HT,yo»A 2 *¿ ® y<+ £ <; m
7t

2 *¿ ® y<+ £.

Since £>0 was arbitrary we see that F is a continuous linear functional

on £ ®x Fand is therefore by Schatten's theorem an element of AX(E, £*)=

A(E,F*). Moreover, ||F||^M=sup., \\Ty\\A.

Conversely, suppose the operator space A(E, £*) has the stated prop-

erty. Define a on £®£as in the preceding lemma. Then according to the

lemma the canonical mapping S:E ®„F-*-A{E, F*)* described in the

proof is an isometric isomorphism.

Let F G (E®XF)*=AX(E, £*). By the Hahn-Banach theorem, F

extends toa functional Fin A(£,£*)** with \\T\\A|x^E.F') = \\'F\\A^E,F')"■

Since the unit ball in A(E, £*) is weak*-dense in the unit ball of A(E, £*)**

there exists a net (Sy) in A(E, £*) for which sup,, ||SJ^^||F|| and

{Sy, x®y}-*(f, x®y) = (Tx,y) for all x®y g E®F^A(E, £*)*. It follows,

then, that we actually have (Sy) weak operator convergent to F. By hy-

pothesis, then, F G AX(E, F*) and ||F||^supy \\Sy\\<W\\A¿E.F*)-

Thus we have shown that if TeAx(E,F*) then TeA(E,F*). The

reverse inclusion is trivial since if F g A(E, F*) then F defines a continuous

linear functional on A{E, £*)* and hence also on £ ®a F^A(E, £*)*. By

Schatten's theorem T e AX(E, £*) and ||7'||¿a<í..í»)^||7||<¡t. It follows that

the spaces /!(£, £*) and /^(f, £*) are isometrically isomorphic.

A more useful version of Theorem 5 is

Corollary. Let A(E, £*) be an operator space. Then there is a cross-

norm a^/l such that A(E, £*) = (£ ®x £)* ;/ and only if the unit ball in

A(E, £*) is compact in the weak operator topology.

Proof. If A(E, £*) = (£ ®a £)* then the unit ball in A(E, £*) is

compact in the a(A, (E, £*), £ ©„ £)-topology (by Alaoglu's theorem)

and hence certainly weak operator compact since all x®y for x e E,

y g £ are in £ ® f.
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Conversely, suppose the unit ball in A(E, F*) is compact in the weak

operator topology and F e ^C(E, F*) is the weak operator limit of the

bounded net (Ty) in A(E, F*). Then by compactness of the unit ball

there is an operator 5 in the ball of radius /-=sup? ||Fy||^ in A(E, £*)

which is a weak operator cluster point of (Ty). But since (Ty) converges

to Fin weak operator topology it must be that S=T (the weak operator

topology is Hausdorff), and hence, by Theorem 5, A(E, £*)=(£ ®a£)*

for the crossnorm a constructed in that theorem.
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