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CONDITION  FOR  A  FUNCTION  SPACE
TO  BE LOCALLY  COMPACT

R.   V.   FULLER

Abstract. Let F be an equicontinuous family of functions

from a compact Hausdorff space to a locally compact Hausdorff

uniform space. In this paper we prove that the pointwise closure

of F is locally compact relative to the topology of uniform con-

vergence.

A function space is proved compact by identifying it with a closed

subset of a (in general) nonfinite product of compact spaces. Since a non-

finite product of locally compact spaces is not necessarily locally compact

this approach is not suitable to prove a function space locally compact.

Instead to obtain the present result we identify F, the family of functions

from X to Y, with a closed subset of the hyperspace of compact subsets

of Xx F endowed with the finite topology.

The author wishes to thank a conscientious referee for help in improving

the exposition of the original paper.

Throughout, Fis a family of functions from a topological space X to a

topological or uniform space Y,fa is a net of functions from Xto Y, and

/is a function from X to Y. We identify a function/from X to Y with its

graph {(x,fix)):x e X} and thus consider it a subset of Xx Y.

We refer the reader to Kelley [1] for standard definitions and results not

given here.

IfZ is a set and IFisasubset of Z,F( W) is the collection of all nonempty

subsets of W and RiW, Z) is the collection of all nonempty subsets of Z

which intersect W.

Definitions. LetZ be a topological space and If7any open subset of Z.

The family of all sets of the form F( W) is a basis for the upper semifinite

iusf) topology on PiZ). The family of all sets of the form RiW, Z) is a

subbasis for the lower semifinite ilsf) topology on PiZ). The finite topology

on PiZ) is the least upper bound of the usf and lsf topologies. Of course
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we may relativise these topologies to subcollections of P(Z) such as C(Z)

the collection of all nonempty compact subsets of Z.

Proposition 1. The Isf topology on F is contained in the topology of

pointwise convergence. If ( Y, ir) is a uniform space and F is equicontinuous

the two topologies coincide on F.

Proof. Let/ be in F and/, be a net in F which converges pointwise to

/. Let R(Ux V, Xx Y) be a subbasic neighborhood off in the lsf topology

and ipfipj) be in/n(7x V where U and V are open. Then f(p) is in V,

so/„(/?) is eventually in V. Therefore (p,fx(p)) is eventually in Ux V. It

follows that/ converges to/in the lsf topology, so the lsf topology is

contained in the pointwise topology.

If ( F, "f) is a uniform space and F is equicontinuous, let/be in F and

/, be a net in F which converges to / in the lsf topology. Let p be in X

and V in "K. There is an open symmetric Vx in "f so that F^c V. Since F

is equicontinuous there is a neighborhood Í/ of p so that x in U implies

(f(x),fxip)) is in V1 for all a. Since/ converges to /in the lsf topology

there is an a0 so that a^a0 implies/,n((/x F1[/(/?)])#0.

Hence for a^a0 there is an xa in £/ with/,(xj in Fj [/(/?)]. Accordingly,

for a^oc0, ifa.ip)f(p)) is in F^cz K. Therefore,/, converges to/pointwise.

Thus on F the lsf and pointwise topologies coincide.

Proposition 2. Let X be compact Hausdorff, Y be a uniform space,

and F be a family of continuous functions. On F, the topology of uniform

convergence and the usf topology coincide.

Proof. This is essentially Theorem 4.2 or 4.6 of Naimpally [3]. Note

that on F the graph topology and usf topology are the same.

Proposition 3. Let F be an equicontinuous family of functions and

i Y, yr) a Hausdorff uniform space. Let F denote the pointwise closure of F

in Yx. Then F is closed in the finite topology on PiXx Y).

Proof. Let/, be a net in F which converges to A in P(Ix F) relative

to the finite topology.

First we show that A is a function from a subset of X to F. Suppose for

some p in X, ip, qx) and ip,q2) belong to A where qx9iq2- There exists a

symmetric V in ir so that qx $ Viiq2). Since F is equicontinuous, a neigh-

borhood U of p exists so that x in U implies (/(x),/(/>)) is in V for all oc.

Since fx converges to A in the lsf topology there is a ß so that/,n

(Ux V[q,])7i0 for (=1, 2. Thus for ;=1, 2 there is an x¡ in U so that

fpixù e V[qA.
Consequently we have in summary that (<7i,/¡(*i))> (fßixi), fßip)),

(fß(p),fß(x2)) and (fß(x2),q2) are in V so that qx is in F%.,]. This contra-

diction shows that A is a function.
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Now we show that the domain of A is X. Suppose p $ dorn A. Since Y

is Hausdorff, {/>} is closed. Thus {p} x Y is a closed set which does not

intersect A. Then we see that Xx Y—{p} x Y is a neighborhood of A in the

usf topology on PiXxY), but/, (since dom/I=A') cannot be eventually

in this neighborhood.

Thus A is in Yx and so applying Proposition 1 to Fu{A] we have that

ftt converges pointwise to A. Therefore A is in F, and Fis closed in PiXx Y)

with the finite topology.

Theorem. Let F be an equicontinuous family of functions from a compact

Hausdorff space X to a locally compact Hausdorff uniform space Y. Let F

be the pointwise closure of F. Then F is locally compact in the topology of

uniform convergence.

Proof. Under our hypothesis pointwise convergence is equivalent to

uniform convergence on F. Thus by Propositions 1 and 2 the topology of

uniform convergence and the finite topology coincide on F.

Now all members of F are compact in Xx Y since they are continuous

and X is compact, so F^CiXx Y). By Proposition 3, F is closed in

PiXx Y) with the finite topology and thus since FnCiXx Y) = F, F is

closed in C(Xx Y).

Since Xx F is locally compact Hausdorff, C(Ix Y) is locally compact

(see Michael [2, Proposition 4.4.1, p. 162]; note "2X" should be "C(X)").

Therefore since Fis a closed subset of a locally compact space, it is locally

compact itself.

Remark. Professor J. S. Yang points out that the statement obtained

from the preceding theorem by letting X be locally compact instead of

compact and replacing uniform convergence by uniform convergence on

compacta is false. Let X be an uncountable set with the discrete topology

and y be the reals. Then Yx is equicontinuous but is not locally compact

in the topology of uniform convergence on compacta since this coincides

with the topology of pointwise convergence.
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