A CHARACTERIZATION OF DUAL B*-ALGEBRAS

EDITH A. McCHAREN

ABSTRACT. Let A be a B^* -algebra. The second conjugate space of A, denoted by A^{**} , is a B^* -algebra under the Arens multiplication. A new proof is given that A is a dual algebra if and only if the natural image of A in A^{**} is an ideal in A^{**} .

In this note we present an alternate proof to the following result of B. J. Tomiuk and Pak-Ken Wong [1].

THEOREM. Let A be a (complex) B^* -algebra, A^{**} be its second conjugate space and π the canonical imbedding of A into A^{**} . Then A is a dual algebra if and only if $\pi(A)$ is an ideal in A^{**} with respect to the Arens multiplication.

PROOF. For each $a \in A$ let L_a and R_a denote the operators on A defined by $L_a(x) = ax$ and $R_a(x) = xa$. If A^* denotes the conjugate space of A, let $L'_a: A^* \to A^*$ denote the transpose of L_a defined by $L'_a(f)(x) = f(L_a(x))$ $(f \in A^*, x \in A)$. The second transpose of L_a is then the mapping $L''_a:$ $A^{**} \to A^{**}$ defined by $L''_a(F)(f) = F(L'_a(f))$ $(F \in A^{**}, f \in A^*)$. Let R''_a denote the second transpose of R_a defined similarly.

Then A is a dual algebra if and only if L_a and R_a are weakly compact operators for each a in A [2, p. 99]. By the generalized Gantmacher theorem [3, pp. 624-625], L_a and R_a $(a \in A)$ are weakly compact if and only if $L''_a(A^{**}) \cup R''_a(A^{**}) \subseteq \pi(A)$. Let * denote the Arens multiplication in A^{**} . It follows from the definition of this multiplication (see [1, p. 530]) that $L''_a(F) = \pi(a) * F$ and $R''_a(F) = F * \pi(a)$ for all $F \in A^{**}$, and therefore $L''_a(A^{**}) \cup R''_a(A^{**}) = \pi(a) * A^{**} \cup A^{**} * \pi(a)$, which completes the proof.

References

1. B. J. Tomiuk and Pak-Ken Wong, The Arens product and duality in B*-algebras, Proc. Amer. Math. Soc. 25 (1970), 529-535. MR 41 #4256.

2. J. Dixmier, Les C*-algèbres et leurs représentations, 2ième éd., Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 39 #7442.

3. R. E. Edwards, *Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York, 1965. MR 36 #4308.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115

© American Mathematical Society 1973

Received by the editors September 28, 1970 and, in revised form, May 13, 1971. AMS (MOS) subject classifications (1970). Primary 46L05; Secondary 46H20.