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F.   T.   HOWARD

Abstract. Let g(n) be a rational function of n whose denomi-

nator is divisible by the same power of 2 for each n and let au

a2, ■ • • be any sequence of rational numbers such that for «>1,

On=g(n)(a1an-1+a2a„-2+ ' ' ' +a„^1a1). In this paper we deter-

mine the exact power of 2 dividing the denominator of an for each

n and prove congruences (mod 4) and (mod 8).

1. Introduction. When dealing with special sequences of rational

numbers, we often want to answer the following question: For a given

prime/?, what is the exact power ofp dividing the numerator or denomi-

nator of the «th number in the sequence? In general this is a difficult

question to answer, especially, if nothing is known about the numbers

other than a recurrence formula expressing the «th number of the sequence

in terms of the previous numbers. Another generally difficult problem is

to prove congruences for the numbers (mod/?*), feäjl. For both of these

problems it appears that the case/?=2 is usually easier to deal with than

p>2.
In this paper we consider any sequence alt a2, • • • of rational numbers

such that, for «>1,
n-l

«« = g(n)^akan_k,

*=i

where g(n) is a rational function of « which is divisible by exactly the same

power of 2 for each n. Examples of such numbers are an=B2n¡(2n)\ where

B2n is the 2«th Bernoulli number and a„ = (2nnT12)/n. We shall determine the

exact power of 2 dividing the denominator (or numerator if 2 does not

divide the denominator) of an and prove congruences (mod 4) and (mod 8).

Examples are discussed in §6. We note that one of these examples is

discussed in [4] and [3] and that a conjecture in [4] is proved in this paper.
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2. Preliminaries. The notation of the introduction and the definitions

and lemmas of this section will be used in the subsequent sections.

Definition 2.1. Define 6(n) as the exponent of the highest power of

2 dividing the denominator of an, «=1, 2, • • • . If 6(n) is negative then

— 6(n) is the exponent of the highest power of 2 dividing the numerator

ofa„.

Definition 2.2. Define t as the exponent of the highest power of 2

dividing the denominator of g(n), n=2, 3, • • • . If t is negative then —t is

the exponent of the power of 2 dividing the numerator of g(n).

Definition 2.3. Let « be a positive integer and let m be the number of

nonzero terms in the base 2 expansion of«. Define/(n, s) as the number

of positive integers r^n/2 such that the number of nonzero terms in the

base 2 expansion of r plus the number of nonzero terms in the base

expansion of n — r is equal to m + s.

The following lemmas are proved in [3] and are necessary for the proofs

of the congruences in this paper.

Lemma 2.1. If there are m nonzero terms in the base 2 expansion of n

thenf(n,0)=2m~1-l.

Lemma 2.2. Let n=2"l + - ■ ■+2"™, m>\, <?¡ —ei+1>l, for q terms

e,, ei—ei+1 = l,form—q—l terms. Thenf(n, l) = (q + l)2m~2 ife„>.\ and

f(n, l)=q2«>-* if em=0.

Lemma 2.3. Let n=2'l + - ■ ■+2e™, e—ew>s>Q, for /=1,---,

m — l and em^.s. Then

/(«!s) = 2(W)(S-j)a(7)2—-«-\

where a(y')=2 ifs+m=2j', a(y')=l ifs+m>2j.

3. The power of 2 dividing an.

Theorem 3.1. Let «^ 1 and let m be the number of nonzero terms in the

base 2 expansion of n. Then 6(n)=nd(\) + l + (n—l)t—m.

Proof. The proof is by induction on n. The theorem is true for «=1.

Assume it is true for 1, • • ■ , «— 1 and let x=nd(l) + l+(n— l)t—m. We

have
[n/2]

(3.1) 2xan = 2xg(n)2 ß(k)akan-k,

*=i

where ß{k)—2 if k^n\2, ß(k)—l if k=n\2. For any k we consider

2x~*ß(k)akan_k. Suppose there are h nonzero terms in the base 2 expansion

of k and w nonzero terms in the base 2 expansion of n—k.
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Case 1.    mj^\. We have by our induction hypothesis

2*-%k)alcan_, = 2eMak ■ 2w»-*>fln_i • 2h+v,-m

or

= (29("/V/2)2 • 2"1"1    if fe = «/2.

Hence every term on the right side of (3.1) is congruent to 0 (mod 2)

except those for which h + w=m. By Lemma 2.1 there are 2™-1 —1 such

terms, an odd number.

Case 2. m=\. In this case every term on the right side of (3.1) is

congruent to 0 (mod 2) except when k=n\2. Hence in both Cases 1 and 2

we have 2xan= 1 (mod 2).

4. Congruences (mod 4). We must assume that a1 and g(n) satisfy one

of the following three sets of congruences for all n. We let r stand for

either 1 or 3.

(4.1) 2'g(n) = 2m)ax = r (mod 4),

(4.2) 2*g(n) = (-l)*r (mod 4),        2e(1,a1 = -r (mod 4),

(4.3) 2'g(n) = (- 1)V (mod 4),        28(1,a1 = r (mod 4).

An example of (4.1) is at—l, g(n)=l, n=2, 3, • • • .

An example of (4.2) is o1=l/(2a+4), g(n)=2¡(a-\-2rí), where a is odd.

An example of (4.3) is a1=\¡\2, g(n)=-]l(2n+\).

Theorem 4.1. Let n=2"l + - • -+2e<", el — ei+1>\, for q terms et,

ei~ei+i — hfor m—\—q terms e, (z'=l, • • ■ , m— 1). Then //(4.1) or (4.2)

holds, we have, for «> 1,

2e{n)an = (-l)V(mod4).

Proof. The proof is by induction on n. The theorem is true for n=2

since by equation (3.1) and Theorem 3.1

2el2)a2 = r(2en)a¡f = r (mod 4).

Assume the theorem is true for 2, • • ■, «—1 and let n satisfy the hy-

potheses of the theorem.

Case 1. m = l. In this case we have n=2Ci, ex>0, q=0 and by equation

(3.1), Theorem 3.1 and our induction hypothesis we have

2e(n)an = r(2eM2)an/2f = r (mod 4).

Case 2. m=2. In this case «=2ei+2"2 and we verifv directly, as in

Case 1, that the theorem holds in the four possible cases: rt — e2>l,e2>0;

e1—e2>\, e2=0; e, — e2=l, e2>0; ex — e2=\, e2=0.
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The proofs in the final three cases are quite similar to each other. We

shall state the cases and then prove Case 5.

Case 3. w>2 and in the base 2 expansion of n there are two terms

2% 2"' such that eM-l>e4>ei+J+l and et_l—l>ei>ei+1+l. We note

that e{ could be either ex or em, in which case the conditions are e1>e2+l

or em_!-l>em.

Case 4. w>2 and in the base 2 expansion of« there is a term 2e* such

that et— em = l, e,_1>l+e< (ifiVl) and ei+1>l+ei+2 (if i+l^m).

Case 5. «¡>2 and in the base 2 expansion of« there is a term 2*1 such

that e¿ — e¿+1 = l, e,+1 — e¿+2=l and e,^ — e¿>l (if ¡VI).

To prove Case 5 we shall use the letters « and w as they were used in

the proof of Theorem 3.1. We shall also assume that (4.1) holds, since

the proof is very similar when (4.2) holds. We first want to consider those

terms on the right side of equation (3.1) for which h + w=m. Let E=

{els • • • , em}. We know that if h + w=m then the exponents of 2 in the base

2 expansions of k and n—k must be elements of E. Consider any distri-

bution of the elements of E— (e¿, ei+1} between k and n—k for which there

is at least one element assigned to k and at least one element assigned to

n—k. Then there are four possibilities for the assignments of e¿ and

ei+1 and we have 2e{k)ak ■ 2e{"~k)an_k is congruent to (— l)2, z=l or —1

if e,, e(+1 and ei+2 are all assigned together; (— l)z+1 if ei+1 and ei+2

are assigned together, e, assigned differently; (—1)~+1 if e¿ and ei+1 are

assigned together, e¿+2 assigned differently; (— l)z+2 if et and ei+2 are

assigned together, ei+1 assigned differently.

Notice that the sum of all such terms 2e(k)ak ■ 2ein-k)a„_k is congruent to

0 (mod 4).

If all the elements of E— {e¿, e¿+1} are assigned to k (or n—k) then by

our induction hypothesis 2e{k)ak • 2e{n~k)an_k is congruent to (— l)a if e{

and ei+1 are assigned together (and hence separated from e¿+2); (— l)9 if

ei+1 is assigned with e!+2 and e¿ is assigned differently; (—l)ï+1 if e¡ is

assigned with e!+2 and e,+1 is assigned differently.

Therefore we have

2e{n)an = r[2(-\y + (-lf+1] + 2r/(«, l)(mod4)

= (-l)V(mod4)

since, by Lemma 2.2,/(«, 1) = 0 (mod 2).

The next theorem is proved in a similar way. We omit the proof.

Theorem 4.2. Let n=2H + - • -+2em, e¿ — eJ+1>l, for q terms e,,

e¡ — ei+1=l,for m—\—q terms e¿ (/=1, • • • , m — \). Then if (4.3) holds,

we have, for «>1,

2e(n)an = (-l)«+"r(mod4).
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5. Congruences (mod 8). In this section we must assume that al and

g(n) satisfy one of the following three sets of congruences, where r is

either 1, 3, 5 or 7.

(5.1) 2'g(n) = 29(1)a1 = r (mod 8),

(5.2) 2'g(n) = (-l)*r (mod 8),       2m)ai = -r (mod 8),

(5.3) 2'g(n) = (-l)V (mod 8),       2m)ai = r (mod 8).

We shall also make use of Lemma 2.3, Theorem 3.1, Theorem 4.1 and

Theorem 4.2.

Theorem 5.1. Suppose any one of (5.1), (5.2) or (5.3) holds for all n.

Ifn=2ei + - ■ •+2*«, ei—ei+1>2,for i=l, • ■ • , m—\ and e„>.2, then

2e[n)an = Ir (mod 8)   if m is even,

= 5r (mod 8)   if m is odd.

Proof. The proof is by induction on m. We first verify that it is true

for m= 1,2, 3. \î n=2e\ then

2e{n)an = rf(n, 1) + 4rf(n, 2) = 5r (mod 8).

If«=2ei+2e% then

2eU)an = rf(n, 0) + 6rf(n, 1) + 4r(f(n, 2) - 1) + 2r s Ir (mod 8).

lîn=2e'-+2e*+2e\ then

2Hn)an = 3rf{n, 0) + 2rf{n, 1) + 4rf(n, 2) + 4r = 5r (mod 8).

Assume the theorem is true for 1, 2, 3, • • • ,m— 1 and n=2ei + - ■ -+2em.

If m is even we have

2eMan = rf(n, 0) + 6rf(n, 1) + 4r/(n, 2) = Ir (mod 8).

If m is odd, we have

2e(n)an = 3r/(n, 0) + 2f/(n, 1) + 4r/(n, 2) = 5r (mod 8).

6. Examples.

Example 6.1.    Let an = Cñ-\)¡n. Then a1=\ and (see [6, pp. 74-75])

Ti-l

¡t=l

If «=2"I + - • •+2"™, e¿—ei+1>l, for ^ terms et, then, by Theorem 3.1,

0(«)=1— m. Therefore the exponent of the highest power of 2 dividing
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Cn-x) is m+s—l, where s is the exponent of the highest power of 2

dividing n. Furthermore,

2i_m_s/2n - 2\ _ 2-sn(-l)a (mod 4).

Ife,— ei+1>2, e„>2, then

2i-m-s|2n ~ 2) = 2"s7/j (mod 8),   if m is even,
\ n — 1 /

= 2_s5n (mod 8),   if m is odd.

We note that Wolstenholme in about 1880 pointed out that the highest

power of 2 dividing ^V1) is m—s—1 where m is the number of nonzero

terms in the base 2 expansion of 2n— 1 and s is the exponent of the highest

power of 2 dividing n. Cesaro, Kummer, Van den Broeck and others

considered this type of problem also [2, pp. 270-272].

Example 6.2. Let an=B2J(2n)\ where B2n is the 2«th Bernoulli

number, defined by

-*—S*£.
ex _  j Z, ..,

-•

Then fl1==l/12 and (see [7, p. 146])

-1

2n + 1
2 a*a«-*-

If n=2Cl + - • •+2"m, et—ei+l>l, for ^ terms e¿, then we have 0(«) =

1+2«—m. Since 2«—w is the exponent of the highest power of 2 dividing

(2«)! [2, p. 263] we have the well-known result that if it^l, the denomi-

nator of B2n is divisible by 2 but not by 4. Also, by Theorem 4.2,

21+2"-mß2n/(2n)! = (-ff*-»4-1 (mod 4).

We note that in [1] it is pointed out that

2B2„ = 1 (mod 4),       n > 1,

and in fact

2B2„ = 1 + 4n (mod 16),       n > 2.

Thus it follows that, for «> 1,

2m-2"(2n)! = (-l)3+n+1 (mod 4).
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Example 6.3.    Let an = ain(a\b), the Rayleigh function of argument

a\b, a odd, b even (see [5]). Then a1=b¡A{a+b) and

b      "v1
a„  = -~T~  2, akan-k-

a + bn i=1

This example is discussed in [4] and [3]. We note that Theorem 4.1 proves

a conjecture in [4], namely that if b=(2k+l)2t, t>0, then

29Mo2n(alb) m (—l)°((2/c + l)/a) (mod 4).
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