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FREE INVERSE  SEMIGROUPS

H.   E.   SCHEIBLICH

Abstract. At least three authors have offered proofs of the

existence of a free inverse semigroup, but without describing its

structure. This paper shows that if X is a nonempty set, G is the

group on X, and E is a certain subsemilattice of the power set of G,

then a certain collection of principal ideal isomorphisms of E is a

free inverse semigroup on X.

I. Introduction. The first to ascertain the existence of a free inverse

semigroup seems to have been V. V. Vagner [5]. Subsequent existence

proofs have been offered in [3], and in [2]. The purpose of this paper is to

provide a characterization of that semigroup and thus shed some light on

its structure.

Terminology will be that of Clifford and Preston [1]. In addition, a

basic knowledge of inverse semigroups and symmetric inverse semigroups

is assumed.

If X is a nonempty set, a free inverse semigroup on J is a pair (/,/)

such that (i) / is an inverse semigroup, (n) f:X—>-I, and (iii) if S is any

inverse semigroup and g : X—>S, then there exists a unique homomorphism

h.l^-S such that fh=g. Definitions of free group and free semigroup are

stated similarly.

Throughout, details of induction proofs are omitted as are other

proofs which seem particularly simple.

II. The free inverse semigroup on X. Let X be a nonempty set. Let

X~x be a set disjoint from X such that |^| = |Ar-1|. Let x—*x~x for each

xelbea bijection of X onto X~x. The union of this map with its inverse,

jc<->x_1, is then a bijection of Y=X(JX~1.
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Let F be the free semigroup on Y, i.e., F is the set of all finite sequences

of elements of Y with products defined by juxtaposition. Let R=

{w e F: w(n+1)#(w(n))~l for all n}. Using the appropriate multiplication ■

on R1, G = R1 is then the free group on X [4]. The relation

£: = {(w, v)e R x R.w = vu for some u e R1}

is a partial order for R. For each w e R, let wf = {i> e Ä:w<p}.

Now let £={^|ÇA:/Î^n, ^4 is finite, and if we A, then w]^A).

The relation 2 (contains) is a partial order for E. Further, if A, BeE,

then A\JBeE and /1U.Z? is the greatest lower bound of {A, B}. Thus

(E, U) is a semilattice. Also if AeE, then ¿vl, the principal ideal

generated by A, is {B e E:B^.A}.

For each x e X, let x : G-*-G by

wx = 1 if h> = 1,

= x_1 if w = x,

= x"*1 ■ w   otherwise.

Then for each xe X, x e Per(G), the permutation group on G, and so the

map x->x extends uniquely to a homomorphism of G into Per(G). Of

course, T is the identity map of G and if x e X, then

M'X-1 =1 if w = 1,

= x if w = X""1,

= x • w   otherwise.

Assume that w eG. Then vv may be considered to be a permutation of

Pow(G), the power set of G, where Aw={vw:v e A). Now let AeE,

and let w e A1. Then w\EA, the restriction of vv to EA, is an isomorphism

of EA onto £'(^vv). Thus w\EA eJE, the symmetric inverse semigroup on

E.

Lemma 2.1. Suppose that AeE; w, v e A1; and w\EA = v\EA. Then

w=v.

Proof. Since w, v preserve order in E, it follows that Aw=Av.

Suppose w?év. If v=l, then A=Aw and w^l. If w, v^\, then assume,

without loss of generality, that v(n)^w(m) where \v\=n and |w|=/tj.

Then A = A\vv~1. But v(\) e A and so (u)wv~l = v(\) for some ue A. But

(wt;_1)(vvß_1)=y(l) and so wv~1=ue A. In any event, A=AU for some

w e^4 with |m|=/^1.

Assume first that ¡¿(1)5¿m(/)-1. From sü=u for some je^ and (uu)ü=u
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follows that uu g A. By induction, un e A for all n, a contradiction since

A is finite.

Assume now that u(l)=u(l)~1 and let k be maximal with respect to

u{j) = u(l+\ —j)'1 for ally with l^j^k. Then u=pqp~x where \p\=k,

\q\=l—2k~^A, %xv$.q{\)^q{l—2k). Then from (pqqp-1)ü=u and induction

follows that pqnp~1 e A for all n, again a contradiction.

Lemma 2.2.    Let A e E and w e A. Then Aw e E and w-1 e ^w.

Proof. Certainly Aw?£\Z\ and /Iw is finite. Suppose that/? e Aw and

p^q. Thenp=bw for some ¿> e ^. Let |¿>| =m, \w\ =«, and let k be maximal

with respect to b(j) = w(j) whenever l^j^k.

(1) Assume first that k=m^n. Then p = bw=w(n)~1 ■ ■ ■ w(k)-x. Thus

q = w(n)~~1 • • • w(/)_1 for some i where k^i^n. But u = w(l) • • • w(i) g

WfS^ and q=uw G /íw.

(2) Assume that k=n<.m. Then /?=¿w=e(¿+l) • • • b(m) and so

q=b(k+l)- ■ -b{l) where k+l^l^m. But w=¿>(0 ■ ■ -¿»(Oe*!^ and

q=uw e Aw.

(3) Assume now that Oi¿k<m, n. Then

p = bw = win)-1 ■ ■ ■ w(k + \)-xb{k + !)••• ¿>(m)

and so either q = w(n)~1 ■ ■ ■ h>(/)-1 where k+l^i^n or

q = win)-1 ■ • ■ w(k + l)r*fr(* + 1) • • • b(l)

where k+l^l^m. In the first case u = w{\) • ■ • w(j.)ew]^A and <jr=

uw g y4w. In the latter case u = b{\) ■ ■ ■ b(l) e b\^A and q=uw e Aw.

Finally, w(l) g A and hence (w(\))w=w~1 g Aw.

Lemma 2.3. Let A, B e E, we A1, v g B1. Then AuBw^eE and

wve (AVBw-1)1.

Proof. Suppose that p e A \JBw~1 and p^q- If p e A, then q e AKJ

Bw'1. Supposep e Bw-1. Thenp=bw~1 for some b e B. Let \b\=m, \w\=n,

and let k be maximal with respect to b(j) = w-1(j) whenever 1 ̂ j^k.

(1) Assume that k=rn<n. Then

p = bw-1 = b(\) ■ ■ ■ bim^win)-1 ■ • • w(n - m + I)-1 ■ • ■ vv(l)-1]

= w(l) • • • w(n — m + 1).

Thus q<=w]<^A<^A \JBw-1.

(2) Assume that k=n<.m. Then

p = bw-1 = è(l) • ■ • b{n) ■ ■ ■ ¿(»OK«)-1 ■ ■ ■ w(l)-1]

= b(n + !)••• b(m).
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Thusq=b(n+l)- • -b(i) where n+l^i^m. But u=b(l) ■ ■ -b(i)eb\^B
and so q = uw~1 e Bw~x^A Ußvv-1.

(3) Assume that 0^k<m, n. Then

p = bw-1 = [b(l) ■ ■ • b(k) ■ ■ ■ b(m)]

x [win)-1 ■•■w{n-k + l)"1 • • • vv(l)-1]

= w(l) •■■w(n- k)b(k + 1) ■ • • b{m).

Thus q e wîçA^AvBw-1 or <7=w(l) • • • w(n — k)b(k+l) ■ ■ ■ b(i) where

k+l^i-^m. In the latter case u = b(l) ■ ■ • b(i) eb^B and <7=wvv_1 e

Bw^^AvBw-1.

The argument that w • v e (A Ußvv-1)1 is similar.

Let I={(A, w) eExG.w e A1}. According to Lemma 2.1, (A, w)—►

w\EA is an injection of / into ,fE and so / will be considered as a subset

of J'E. Thus (A,w)~1 = (Aw,w~1)eI by Lemma 2.2. Further, if

(A, w)(B, v) e I, then the domain of (A, w)(B,v) is {E(Aw)r\EB)w~1 =

(E(AwKJB))w-1 = E{A\JBw-1). Also wv=(w ■ d)~. Hence (A, w)(B, v) =

(A U5vv_1, w ■ u) e I by Lemma 2.3. Thus / is an inverse subsemigroup of

JV Let f.X^I by x/=({x}, x).

Theorem 2.4.    (/,/) is a free inverse semigroup on X.

Proof. Let S be an inverse semigroup and let g: X^*S. Then g extends

to a map g' : Y^-S by (x~1)g' = (xg)~1 for each x e X. Since F is a free

semigroup on Y, and since Y may be considered to be a subset of F, there

exists a unique homomorphism h':F^-S such that h'\ Y=g'. When w e F,

then wh' will be denoted by (h>). Thus if w=w(l) ■ • • w(n) e R, then

(w) = (w(l)) • • • (w(n)). When no confusion seems possible, (w) will be

denoted more simply by w.

Let Kç S with K finite. If K= D, then [£] will mean 1 e Sl. If K^tJ,

then [/£] will mean FJ {out1 : ö ë AT}. Notice that if Iç 5 with L finite, and

r, seS, then [K][L]= [KVL], r[K]r-1=[rK], r[r^K]= [K]r, [rK]r=

r[K], and [r, rs]=[rs].

Now let (A, vf) el. If w=l, let {A, w)°={(u):u e A}çs. If w^l, let

(A, w)°={(u):u eA, u{\)^w{\)}. For each i such that l^i'<|w|,

let (A,wy = {(u):ueR, (J~[}=1 w(j))u e A, and u(\)^w(i+l)}, and

let (A,w)^ = {(u):ueR,wueA}. If 0<i<|w|, let [A, wY=[(A, w)'].

Define h:I->S by
M

(^ w)/2 = [X, w]° u MM-4, vv]''.

It follows immediately that g=fh. The argument that h is indeed a homo-

morphism will be accomplished as a sequence of lemmas. Let {A, w),

(B, v) e I.
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Lemma 2.5.    Assume w=l. Ifv—\, then

(A, \)h(B, \)h = [A, l]0[B, If =[AUB, 1]° = [(A, \)(B, \)]h.

Assume \v\}î\. Then

I »I

(A, \)h(B, v)h = [A, \f[B, v]° n WJMB, vY
3 = 1

= [(u):ueA,u(l)^v(\)]

■ [B, vf[{u):u G A, u(\) = v(\)](v(l))[B, v]1

1*1

■YlWMB,vf
3 = 2

= [A U B, vf(v(\))[(u):u G R, v(l)u e A, u(\) ^ v(2)][B, vf
\v\

■ [(u):u e R, v(\)u e A, u(\) = v(2)] U (v(j))[B, »]'
3=2

l«l
= ■ ■ • = [A u B, v]° HI W))[A u fi, »]'- [(/I, 1)(B, p)JA.

¿-i
Lemma 2.6.    Assume that |w| = l, say w=x e Y.

(1) Suppose v=\. Then

(A, x)h(B, \)h = [A, xY>x[A, xf[B, 1]°

= [A,x]°x[ueB:u(\) = x-l][A, x]x[u e B:u(\) =¿ x~']

= [^, x]°[k ê Air1« e JJ]í[^, x]1!« e Ä:a(l) ^ x~x\

= [A U fix^1, x]"x[/4 U Bit1, x]1 = [(A,x)(B, ])]h.

(2) Suppose that \v\ ̂  1 and v{\)=x~1. Let x • v=b G G. Then

H
(/l, x)/i(ß, t>)A = [A, xfx[A, xf[B, vfx'^B, vf YJ o(j)[B, v]1

i-i
M

= M, x]°[x(/l, x)1][x(B, i;)°][B, v]1 ü »0")[*. tf
J-2

= [u e A:u(\) # x, v(2)][x(A, xr][x(B, v)°]

1*1
• [B,i;]>e/!:«(!) = *2)]n «MI*. »]'

3=2

= [/t U Bx~\ bfv(2)[u eR:v(2)u e A, m(1) r- v(3)][B, v]2

1*1
• [« e R: K2)u g ,4, t/(l) = y(3)] TI K/>[ß> «F = • • ■

3=3

1*1

= [A U fix"1, fc]° n b0')M u Bx~\ b]1

= [(A,x)(B,v)]h. '
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(3) Suppose that \v\~^.\ andvfVjjíxr1. Then

1*1

(A, x)h(B, v)h = [A, xfx[A, xf[B, vf U v{j)[B, »Y
¿=i

= [A, xfx[ue(B, vf:u(l) = x"1]^ e(A, xf:u(l) * v(l)]

■ [ue(B,v)°:u(l) ^ x"1]^ 6 (A, xr:u(l) = v(l)]

M

■ n vij)[B, vv
3 = 1

= [A, x]°[u eS:rt e (5, v)°]x[u eR.xueA, w(l) ^ u(l)]

• [fix"1, xy]xí;(t)[ueR:xí<l)«e/l, m(1) ̂  u(2)][B, vf

M
• [ue«:xc(l)u6^,u(l) = i>(2)] HI "(./)[£, «]''

3=2

= [-4 U Bx~\ xv]°x[A u BjT1, xüjyi)^ U BJT1, xt>]2

1*1
■ [u e R:xv(l)u e A, m(1) = u(2)] jQ Ky')[ß, f]3' - ' ' '

3=2

= [A U ßx"\ xu]0 n O)0')M U Bx~\ xvY
3=1

= [(/l, x)(ß, v)]h.

Lemma 2.7.    Suppose |w|=«^2. Let

W = lu e R: (T~[ w(j)\ue A, u(l) = w(n)j.

ató fei ö = (^, w'00)- Then P, Q e I, (A, w)=PQ, and (Ph)(Qh) = (PQ)h.

That A is a homomorphism now follows by induction using Lemmas

2.5, 2.6, and 2.7. It is not difficult, using Lemma 2.7, to see that Xf

generates /. Thus h is the only homomorphism from / into 5" such that

ß=g.
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