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DIFFERENTIABILITY  OF THE METRIC   PROJECTION
IN FINITE-DIMENSIONAL EUCLIDEAN  SPACE

EDGAR  ASPLUND

Abstract. The metric projection on a closed subset of a

finite-dimensional Euclidean space is almost everywhere differen-

tiable.

The main purpose of this short note is to point out that the answer to a

question by Kruskal [3] is implicit in a famous theorem of A. D. Alexan-

drov [1] (of which a new proof has recently been given by Resetnjak [4])

which says that each continuous convex function on Rn is almost every-

where twice differentiable. For n—\, this reduces to Lebesgue's theorem

about the differentiability almost everywhere of a monotone function.

Using Alexandrov's theorem one can prove the following theorem which

contains the answer to Kruskal's question.

Theorem. The metric projection on any closed subset of a finite-dimen-

sional Euclidean space is almost everywhere differentiable.

Consider Rn as provided with the standard Euclidean norm. For a

closed 7C<= Rn and an element x e Rn letp(x) be the nearest point in K to x.

This may not be everywhere uniquely defined (as a matter of fact, this

happens if and only if K is convex) but we make a selection and call the

function p : Rn->-K so defined the metric projection on K. In Asplund [2,

p. 42 et seq.], it is shown that the convex function/, defined and con-

tinuous on all of Rn by

f(x) = sup{(x,y) - \\y\\2l2 \yzK}= ||x||2/2 - inf \\x - j||2/2,
veK

has p(x) for a differential at all points x where / is once differentiable.

Moreover, at those points where/is not differentiable, p(x) is an element

of the subdifferential of/at x. These are all easy facts, and the details of

the calculations can be found in the paper [2]. An obvious calculation

along the same lines then shows that our theorem here is a consequence of

Alexandrov's.
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The technique, used here and in [2], to represent a metric projection as

the gradient of a convex function works only in Euclidean space. It would

therefore be interesting to know for which finite-dimensional Banach

spaces it is true that the metric projection on each closed subset is almost

everywhere differentiable.
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