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DIFFERENTIABILITY OF THE METRIC PROJECTION
IN FINITE-DIMENSIONAL EUCLIDEAN SPACE

EDGAR ASPLUND

ABsTRACT. The metric projection on a closed subset of a
finite-dimensional Euclidean space is almost everywhere differen-
tiable.

The main purpose of this short note is to point out that the answer to a
question by Kruskal [3] is implicit in a famous theorem of A. D. Alexan-
drov [1] (of which a new proof has recently been given by ReSetnjak [4])
which says that each continuous convex function on R” is almost every-
where twice differentiable. For n=1, this reduces to Lebesgue’s theorem
about the differentiability almost everywhere of a monotone function.

Using Alexandrov’s theorem one can prove the following theorem which
contains the answer to Kruskal’s question.

THEOREM. The metric projection on any closed subset of a finite-dimen-
sional Euclidean space is almost everywhere differentiable.

Consider R® as provided with the standard Euclidean norm. For a
closed K< R™ and an element x € R" let p(x) be the nearest point in X to x.
This may not be everywhere uniquely defined (as a matter of fact, this
happens if and only if X is convex) but we make a selection and call the
function p: R"—K so defined the metric projection on K. In Asplund [2,
p- 42 et seq.], it is shown that the convex function f, defined and con-
tinuous on all of R™ by

SO) = sup{(x,y) — Iyl*2 |y e K} = |Ix||*2 —:enlg Ix — yl%/2,

has p(x) for a differential at all points x where f is once differentiable.
Moreover, at those points where fis not differentiable, p(x) is an element
of the subdifferential of f at x. These are all easy facts, and the details of
the calculations can be found in the paper [2]. An obvious calculation
along the same lines then shows that our theorem here is a consequence of
Alexandrov’s.
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The technique, used here and in [2], to represent a metric projection as
the gradient of a convex function works only in Euclidean space. It would
therefore be interesting to know for which finite-dimensional Banach
spaces it is true that the metric projection on each closed subset is almost
everywhere differentiable.
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