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DEMICONTINUITY  AND  HEMICONTINUITY

IN  FRÉCHET SPACE

HUGO  D.  JUNGHENN

Abstract. It is proved that the notions of demicontinuity and

hemicontinuity for monotone maps from a Fréchet space into its

dual are equivalent, thus generalizing a result of T. Kato.

Let A' be a (real or complex) locally convex Hausdorff linear topological

space, X* its dual, and ( , ) the natural pairing between A'andX*. In what

follows we consider (possibly) nonlinear operators G with domain D(G)

contained in X and range contained in X*.

Definitions.   G is said to be

(a) monotonie if Re(x— y, Gx—Gy)^.0; x, y e D(G);

(b) demicontinuous at « G D(G) if un e D(G), n—\, 2, • ■ • , and un—>u

imply Gun-^Gu (-*■ and —» denote strong convergence in X and weak*

convergence in X* respectively);

(c) hemicontinuous at m g D(G) if v e X, tn>0, «=1, 2, ■ ■ ■ , tn-*-0 and

u + tnv g D(G) imply G(u+tnv)^G(u).

The following theorem generalizes a result of T. Kato (see [1]).

Theorem. IfX is a Fréchet space, G is monotonie, and D(G) is open in X,

then G is demicontinuous at u e D(G) if and only if G is hemicontinuous at u.

Proof. The necessity is clear. Assume G is hemicontinuous at m g

D(G), and let u„ e D(G), «=1, 2, • • ■ , «„-+«. We shall show first that

{Gun} is a strongly bounded subset of X*.

Suppose that this is not the case. Then by the principle of uniform

boundedness (see [2]) there exists some x e X and a subsequence of {«„},

which we shall denote by {«„}, such that

rn = |(x, Gw„)|-> oo.

We construct a sequence of integers kn as follows:

kn = [minflk - t/||-1/4, /•„}]   if un * u,

= [r„] if u„ = u,
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where [•] denotes the greatest integer function and ||-|| denotes the quasi-

norm of X. Clearly &„—>-oo and ||rc^(«„ —m)||íía^||w„ —wU — Hh,, —w||1/2 for

all n. Setting tn=kñ1 we thus have

(1) f „ — 0   and    t~\u„ - u) -> 0.

Let v e X and set wn=u+tnv. Since D(G) is open, wn e D(G) for all n

greater than some n0. The monotonicity of G implies that

(2) Re(o, Gun) ^ í;1 Re(w„ - «„, Gwn) + Q1 Re(w„ - u, Gun).

By the hemicontinuity of G, {Gwn:n>n0} is pointwise bounded and there-

fore, by the uniform boundedness theorem, equicontinuous. Since

tñ1(wn~un)-*v it follows that {t~l Rt(wn — un, Gwn):n>n0} is bounded.

Next, we obtain an upper bound for the second term on the right side

of (2). Let p denote the continuous seminorm on X* defined by the

bounded subset of A'consisting of the point x and the sequence {t^(un—u)}.

Setting sri=p(Gun) we have, for all n,

in1 Re(«n - u, Gu„) <: sntn.

Therefore,

Re(y, Gun) <| C + S„tn,        n > n0,

where C is a constant depending on v but not on n. Dividing by sntn and

noting that sntn^rntn^.l we obtain

Re(v,(sntn)-1Gun)^C+ 1,        n>n0.

Replacing v by —v (and by ± iv if X is complex) we see that {(v, (s„rn)_1(Jt<„)}

is bounded for all veX. By the uniform boundedness theorem again,

{(i„i„)_1CÏMn} is bounded in X*. But this is clearly impossible since

p((sntn)~1Gu7l) = tñ1^*<x>. Thus {Gun} is bounded.

We now show that Gun-^Gu. Define a sequence of integers j„ by

jn  =   [««»  -  «II-1'"]      if «„*«,

= n if un = u.

If y e A and we set ^—jñ1, wn = u+tnv, then (1) and (2) hold as before.

Let q be the continuous seminorm on X* defined by the bounded set

{tn2(un — u)} and let qn=q(Gun). Then {qn} is bounded and

(3) Q1 Re(un - u, Gu„) = qntn -* 0.

The hemicontinuity of G implies that {Gwn} is equicontinuous, hence

(4) z;1 Re(w„ - un, Gwn) -* Re(v, Gu).
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Thus from (2), (3), and (4) we obtain

lim sup Re(v, Gun — Gu) ^ 0.
n-*oo

Since v was arbitrary,

lim sup \(v, Gun — Gu)\ = 0   for all v e X,
n-*oo

hence Gun-^Gu.
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