DEMICONTINUITY AND HEMICONTINUITY IN FRÉCHET SPACE

HUGO D. JUNGHENN

ABSTRACT. It is proved that the notions of demicontinuity and hemicontinuity for monotone maps from a Fréchet space into its dual are equivalent, thus generalizing a result of T. Kato.

Let X be a (real or complex) locally convex Hausdorff linear topological space, X^* its dual, and (,) the natural pairing between X and X^* . In what follows we consider (possibly) nonlinear operators G with domain D(G) contained in X and range contained in X^* .

DEFINITIONS. G is said to be

- (a) monotonic if $Re(x-y, Gx-Gy) \ge 0$; $x, y \in D(G)$;
- (b) demicontinuous at $u \in D(G)$ if $u_n \in D(G)$, $n=1, 2, \cdots$, and $u_n \rightarrow u$ imply $Gu_n \rightarrow Gu$ (\rightarrow and \rightarrow denote strong convergence in X and weak* convergence in X^* respectively);
- (c) hemicontinuous at $u \in D(G)$ if $v \in X$, $t_n > 0$, $n = 1, 2, \dots, t_n \rightarrow 0$ and $u + t_n v \in D(G)$ imply $G(u + t_n v) \rightarrow G(u)$.

The following theorem generalizes a result of T. Kato (see [1]).

THEOREM. If X is a Fréchet space, G is monotonic, and D(G) is open in X, then G is demicontinuous at $u \in D(G)$ if and only if G is hemicontinuous at u.

PROOF. The necessity is clear. Assume G is hemicontinuous at $u \in D(G)$, and let $u_n \in D(G)$, $n=1, 2, \dots, u_n \rightarrow u$. We shall show first that $\{Gu_n\}$ is a strongly bounded subset of X^* .

Suppose that this is not the case. Then by the principle of uniform boundedness (see [2]) there exists some $x \in X$ and a subsequence of $\{u_n\}$, which we shall denote by $\{u_n\}$, such that

$$r_n = |(x, Gu_n)| \to \infty.$$

We construct a sequence of integers k_n as follows:

$$k_n = [\min\{||u_n - u||^{-1/4}, r_n\}]$$
 if $u_n \neq u$,
= $[r_n]$ if $u_n = u$,

Received by the editors June 22, 1972.

AMS (MOS) subject classifications (1970). Primary 47H05; Secondary 46A05. Key words and phrases. Fréchet space, demicontinuity, hemicontinuity, monotonic.

where $[\cdot]$ denotes the greatest integer function and $\|\cdot\|$ denotes the quasinorm of X. Clearly $k_n \to \infty$ and $\|k_n^2(u_n - u)\| \le k_n^2 \|u_n - u\| \le \|u_n - u\|^{1/2}$ for all n. Setting $t_n = k_n^{-1}$ we thus have

(1)
$$t_n \to 0 \text{ and } t_n^{-2}(u_n - u) \to 0.$$

Let $v \in X$ and set $w_n = u + t_n v$. Since D(G) is open, $w_n \in D(G)$ for all n greater than some n_0 . The monotonicity of G implies that

(2)
$$\operatorname{Re}(v, Gu_n) \le t_n^{-1} \operatorname{Re}(w_n - u_n, Gw_n) + t_n^{-1} \operatorname{Re}(u_n - u, Gu_n).$$

By the hemicontinuity of G, $\{Gw_n: n > n_0\}$ is pointwise bounded and therefore, by the uniform boundedness theorem, equicontinuous. Since $t_n^{-1}(w_n-u_n) \rightarrow v$ it follows that $\{t_n^{-1} \operatorname{Re}(w_n-u_n, Gw_n): n > n_0\}$ is bounded.

Next, we obtain an upper bound for the second term on the right side of (2). Let p denote the continuous seminorm on X^* defined by the bounded subset of X consisting of the point x and the sequence $\{t_n^{-2}(u_n-u)\}$. Setting $s_n=p(Gu_n)$ we have, for all n,

$$t_n^{-1} \operatorname{Re}(u_n - u, Gu_n) \leq s_n t_n$$

Therefore,

$$Re(v, Gu_n) \leq C + s_n t_n, \quad n > n_0,$$

where C is a constant depending on v but not on n. Dividing by $s_n t_n$ and noting that $s_n t_n \ge r_n t_n \ge 1$ we obtain

$$Re(v, (s_n t_n)^{-1} Gu_n) \le C + 1, \quad n > n_0.$$

Replacing v by -v (and by $\pm iv$ if X is complex) we see that $\{(v, (s_n t_n)^{-1} G u_n)\}$ is bounded for all $v \in X$. By the uniform boundedness theorem again, $\{(s_n t_n)^{-1} G u_n\}$ is bounded in X^* . But this is clearly impossible since $p((s_n t_n)^{-1} G u_n) = t_n^{-1} \to \infty$. Thus $\{G u_n\}$ is bounded.

We now show that $Gu_n \rightarrow Gu$. Define a sequence of integers j_n by

$$j_n = [\|u_n - u\|^{-1/4}]$$
 if $u_n \neq u$,
= n if $u_n = u$.

If $v \in X$ and we set $t_n = j_n^{-1}$, $w_n = u + t_n v$, then (1) and (2) hold as before. Let q be the continuous seminorm on X^* defined by the bounded set $\{t_n^{-2}(u_n-u)\}$ and let $q_n = q(Gu_n)$. Then $\{q_n\}$ is bounded and

(3)
$$t_n^{-1} \operatorname{Re}(u_n - u, Gu_n) \leq q_n t_n \to 0.$$

The hemicontinuity of G implies that $\{Gw_n\}$ is equicontinuous, hence

(4)
$$t_n^{-1} \operatorname{Re}(w_n - u_n, Gw_n) \to \operatorname{Re}(v, Gu).$$

Thus from (2), (3), and (4) we obtain

$$\limsup_{n\to\infty} \operatorname{Re}(v, Gu_n - Gu) \leq 0.$$

Since v was arbitrary,

$$\lim \sup_{n \to \infty} |(v, Gu_n - Gu)| = 0 \quad \text{for all } v \in X,$$

hence $Gu_n \rightarrow Gu$.

REFERENCES

- 1. T. Kato, Demicontinuity, hemicontinuity, and monotonicity. II, Bull. Amer. Math. Soc. 73 (1967), 886-889. MR 38 #6411.
- 2. K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 37 #725.

DEPARTMENT OF MATHEMATICS, GEORGE WASHINGTON UNIVERSITY, WASHINGTON, D.C. 20006