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THE  GAUSS MAP IN  SPACES  OF CONSTANT  CURVATURE

JOEL  L.   WEINER

Abstract. Let TV be a complete simply connected Riemannian

manifold of constant sectional curvature 9^0. Let M be an im-

mersed Riemannian hypersurface of N. The Gauss map on M based

at a point p in N is defined. Suppose a Gauss map on M has constant

rank less than the dimension of M; then M is generated by Rie-

mannian submanifolds with constant sectional curvature. The

sectional curvature of each of these generating submanifolds of M

has the same sign as the sectional curvature of N.

1. Introduction. Let M be an «-dimensional Riemannian manifold

isometrically immersed into Euclidean («+rc)-space En+k (íV_l) and v be

the bundle of unit vectors normal to M. The Gauss map of v into the unit

sphere Sn+k~1 about the origin of En+k is well known. Willmore and Saleemi

[3] generalized this map to the case where M is an «-dimensional Riemann-

ian manifold immersed into an («+A:)-dimensional complete, simply

connected Riemannian manifold N with nonpositive sectional curvature as

follows. Let/7 e A^ and v be the unit normal bundle of M in AA The parallel

displacement of v e v along the shortest geodesic joining the foot point

of v to p gives a mapping of v into the unit sphere in the tangent space of N

at p. If N is an arbitrary Riemannian manifold with M isometrically im-

mersed into it and p e N the only requirement we need for the construction

of Willmore and Saleemi is for M not to intersect the cut locus of p. We call

the resulting mapping from v into the unit sphere in the tangent space of

N at p the Gauss map on M based at p.

R. Takagi [2] describes an «-dimensional complete Riemannian mani-

fold M isometrically immersed into an Euclidean («+l)-sphere5"+1when

the Gauss map on M based at a point p e Sn+1 has constant rank on M.

He shows that M is generated by metric spheres. We will show that a

similar result holds when the ambient space is a complete, simply connected

Riemannian manifold of constant sectional curvature — 1, that is, hyper-

bolic space of curvature —1. In this case, M is generated by hyperbolic

spaces. We will also reprove Takagi's theorem in a simpler fashion.
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Definition. We say a Riemannian manifold is generated by Rie-

mannian manifolds of a certain type if we can foliate M into Riemannian

submanifolds of that type.

2. The Gauss map in Hn. Let Hn be «-dimensional hyperbolic space of

constant sectional curvature —I. Hn will be realized as {x eEn: ||x||<l}

with the metric ( , ) where (v, w) = (v ■ w)/h2(x) if v and w are vectors at x

and h(x)= (I — \\x\\2)l2. Thus the metric on Hn is conformally equivalent to

the usual flat metric on {x e En: Hx||<l}.

Suppose M is an «-dimensional Riemannian manifold isometrically

immersed in H"+k (k^.1). Let vH(M) be the unit normal bundle of M in

Hn+k. Letpe M and eH:vH(M)-+SBHn±k be the Gauss map on M based

at/?, where SpHn+k is the unit sphere in tangent space to Hn+k at p. If/»=0,

the origin in £"+*, we identify H;+k=H%+k with En+k; then S0Hn+k=

Sn+k~1(l¡2), the sphere about the origin in En+k of radius 1/2. The radius is

1/2 because «(0)=l/2; that is, the metric on H¡¡+k is twice the usual metric
on En+k.

M is also immersed in En+k (of course, not isometrically). Let vE(M)

be the unit normal bundle of M in En+k. Let eE:vE(M)^Sn+k~1(l) be the

usual Gauss map in En+k.

Lemma 1. Let M be an n-dimensional Riemannian manifold isometrically

immersed in Hn+l". Let eH be the Gauss map based at 0. Then the following

diagram is commutative, where h(v)=h(x)v ifv e vE(M)x, that is, v is normal

to M at x, and X 1/2 indicates scalar multiplication by 1/2.

eE
vE(M)->Sn+k~1(l)

Xl/2

vH(M)—I-^Sn+k-1(l/2)

Proof. Let v e vE(M)x; then h(x)v e vH(M)x. Let £: [0, p\~*Hn+k be

the unit speed geodesic from x e M to 0. We know that t, is a reparametri-

zation of the straight line segment in En+k from x to 0. Let Kbe the parallel

vector field along £ in En+k such that V(0) = v. Then (« ° Ç)Vis the parallel

vector field along £ in Hn+k such that [(h o Ç)V}(Q)=h(x)v. Hence,

eH(h(x)v)=h o Up)V(p) = (l¡2)V(p) = (l¡2)eE(v).    D

Lemma 2. « : vE(M)—>-vH(M) is a diffeomorphism, and hence the rank of

eE at v equals the rank of eH (based at 0) at h(v) for all v e vH(M).

Proof.    Both statements are obvious.    D

Remark. Lemmas 1 and 2 essentially still hold if Hn+k is replaced by a

Riemannian manifold Nn+k defined on the open unit disk in En+k with
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metric ( , ), where (v, w) = (v • iv)/«2(x-), if v and w are vectors at x, and

h(x) is a positive function which depends only on ||x||.

3. Special hyperbolic subspaces. Before we proceed further it is neces-

sary to characterize intrinsically the Riemannian submanifolds M=Lnn

Hn+i of H"+1, where Ln is a hyperplane of EnJrl which has nontrivial

intersection with Hn+1.

Let d be the metric on Hn+1. Fixp e Hn+1 and let M be an «-dimensional

complete orientable Riemannian submanifold. Set X=tanh(d(p, M)/2).

Let z e M such that d(p, z)=d(p, M). Let U be a unit normal vector field

on M such that t/(z) = £(0), the initial velocity of the unit speed geodesic £

from z to p, if z?±p. If the second fundamental form Sjj with respect to U

equals XI, where / is the identity, then M is called a special hyperbolic sub-

space with respect to p. Indeed, for «=2, M is a hyperbolic space with

constant sectional curvature — 1+A2<0. If X¿¿0, M is one of two totally

umbilic hyperbolic spaces through z at a distance d(p, z) from p; for the

other space SU = — XI. If X=0, M is a totally geodesic hypersurface

through p.

Isometries preserve the relationship of being a special hyperbolic sub-

space with respect to a point. If <f>:Hn+1^-Hn+1 is an isometry, p e Hn+1,

and M is a special hyperbolic subspace with respect to p, then </>(M) is a

special hyperbolic subspace with respect to <f>(p). Hence if we know the

special hyperbolic subspaces with respect to one point of Hn+1, then we

know the special hyperbolic subspaces with respect to any point.

Lemma 3. The special hyperbolic subspaces of Hn+l with respect to 0 are

the Riemannian submanifolds LnnHn+1, where Ln is a hyperplane of En+1

which has nontrivial intersection with Hn+1.

Proof. The calculations are straightforward. They depend heavily on

the fact that H"+1 has a metric which is conformally equivalent to the

usual flat metric on the open unit disk by a function which depends only

on |j.v||.    D

4. Theorem. If M is orientable afîd k = \, we can identify M with a

component of vn(M) and also the corresponding component of vK(M).

Then eH:M—>-SPHn^1 is the Gauss map based atp andeE:M^-Sn(i) is the

usual Gauss map.

Theorem 4. Let M be an n-dimensional complete orientable Riemannian

manifold isometrically immersed in Hn+i. Suppose eII:M~>S]>Hn+1 has

constant rank n—m on M (0 _»?_«).

(1) Let «z=0. If M is compact, then M is diffeomorphic to the n-sphere.
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(2) Let l^m^n—l. Then M is generated by m-dimensional hyperbolic

spaces (whose sectional curvatures may vary).

(3) Let m=n. Then M is a special hyperbolic subspace with respect to p,

and conversely.

Proof.    (1). This is clear.

(2) and (3). First, we may assume without loss of generality that/> = 0

by the homogeneity of Hn+1. Thus eH:M-*Sn(ll2) having constant rank

n—m on M implies that eE:M~^-Sn(l) has constant rank n—m on M, by

Lemma 2. By Lemma 2 of [1], M is generated by m-dimensional planes Lm

in En+1 intersected with Hn+1. For each Lm, LmC\Hn+1 with the metric

induced from Hn+1 is a hyperbolic space. Since the metric on LmC\Hn+1

depends on the distance from Lm to 0, the curvatures of these hyperbolic

apaces may vary. Hence M is generated by «2-dimensional hyperbolic

spaces.

When m=n, M isa hyperplane L" intersected with Hn+1 with the induced

metric. Thus, by Lemma 3, it is a special hyperbolic space with respect to

0. If, on the other hand, M is a special hyperbolic space with respect to 0,

then there exists a hyperplane Ln of En¥1 such that M=LnC\Hn+1. Hence

eE:M~^Sn(l) has rank 0; hence, eH:M^S0Hn+1 has rank 0.    D

The preceding theorem is also true on hyperbolic spaces with constant

sectional curvature different from — 1. However, it is necessary to modify

the definition of special hyperbolic subspace so that SU = (KX)I on a

special hyperbolic subspace when the ambient hyperbolic space has con-

stant sectional curvature — A^<0.

5. The Gauss map in spheres. Let Sn+1 be the Euclidean unit (« + 1)-

sphere. Fix/7 e Sn+1. Suppose M is an «-dimensional orientable immersed

submanifold of Sn+1, and vs(M) is the unit normal bundle of M in Sn+1.

Since the codimension of M in Sn+1 is 1 and M is orientable, we identify

M with a component of vs(M).

Let —p denote the antipode of p. Since —p is the cut locus of p we can

define the Gauss map based at p as es:M\{—p}^>-SpSn+1.

Let er:S"+1\{— p}—>-En+1 be stereographic projection from — p; a is a

conformai mapping. Denote by M* the image of M\{—p} under a. a(p) = 0,

so we can identify the tangent space at/7 with E*+1. Under this identification

we know that SvSn+1, the unit sphere about p in the tangent space to

Sn+1 at p, agrees with Sn, the unit sphere about 0 in En+1. Hence es:

M\{—p}^Sn. Let eE:M*—Sn be the usual Gauss map in En+1 on M*.

Lemma 5. Let M be an n-dimensional orientable Riemannian manifold

isometrically immersed in Sn+1. Then the following diagram is commutative.
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M\{-p)->Sn

a
*     eE

id

M*-> Sn

Proof.    The proof is identical to the proof of Lemma 1.    D

Using Lemma 5, the fact that planes in En+1 correspond to spheres

through —p under a, and arguing as in the hyperbolic case we get the

theorem first due to R. Takagi [2], which we restate here in an intrinsic

form.

Theorem 6. Let M be an n-dimensional complete orientable Riemannian

manifold isometrically immersed in Sn+1. Suppose that the Gauss map

es:M\{— p}^-SpSn+1 based at p has constant rank n—m on M\{—p)

(0<«7<«).

(1) Let «2 = 0. If M is compact, then M is diffeomorphic to the n-sphere.

(2) Let \^m^n—l. Then M is generated by Euclidean m-spheres, each

through —p.

(3) Let m=n. Then M is a Euclidean hyper sphere through —p, and

conversely.

Again, we remark that the preceding result is not peculiar to Euclidean

spheres of unit radius but holds for Euclidean spheres of arbitrary radius.

Remark. It is important to note that the last two parts of Theorem 4

and Theorem 6 are really local in nature. Thus, if the Gauss map based

at/? on an open set KcM has constant rank less than «, then the open set

V is generated by parts of special hyperbolic subspaces with respect to p

or parts of Euclidean spheres through — p according as the ambient space

has constant negative or positive sectional curvature.
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