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LOWER  BOUNDS  FOR  SOLUTIONS  OF  HYPERBOLIC
INEQUALITIES  IN   UNBOUNDED   REGIONS1

AMY   C.   MURRAY

Abstract. This paper considers C2 solutions u=u(t, x) of the

differential inequality \Lu\^k1(t, x)\u\+k2(t,x) ||V«||. The coeffi-

cients of the hyperbolic operator L depend on both t and x.

Explicit lower bounds are given for the energy of « in a region of

x-space expanding at least as fast as wave-fronts for L. These

bounds depend on the asymptotic behavior of £,, k2, and the

coefficients of L. They do not require boundary conditions on u.

1. Introduction. Let F be a hyperbolic operator of the form Lw=

A(t, x)u—utt where A(t, x) denotes a second order uniformly elliptic

operator whose coefficients depend on the time variable / as well as the

spatial coordinates x=(xx, • • • , xN). Several authors [1], [3], [4], [5], [6]

have considered the asymptotic behavior of solutions of the equation

(1.1) Lit = F(t,x,u,Vu).

Because of both the time-dependence in A(t, x) and the presence of ut

on the right side, one cannot expect all solutions of (1.1) to behave like

solutions of the wave equation.

In [4], the author discussed the asymptotic behavior of C2 solutions of

the inequality

(1.2) |£a| ^ kx(t, x) \u\ + k2(t, x) |V«|.

Such an inequality arises from (1.1) if F is assumed Lipschitz in its last

two arguments. The results of [4] establish a kind of unique continuation

at infinity, e.g., if a solution of (1.2) decays fast enough inside a forward

characteristic conoid for L, then it must vanish there. This paper sharpens

[4] by providing explicit lower bounds for nonvanishing solutions.

The bounds are comparable to those found by Ogawa [5] for the

inequality ||Fw||^rV(?) ||V«|| where ||-|| denotes the L2 norm on a domain
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in RA. Ogawa's bounds improved certain maximal rate of decay results of

Protter [6].

Recently Bloom and Kazarinoff [1] have announced upper bounds on

solutions of Lu=0 in expanding regions outside an obstacle.

The operator A(t, x) we consider is defined by

,/     -,       v»   3      ,     . du
A(t, x)u = >  — dijit, x) — .

(£idxt dxj

We assume that the coefficients ati are C1 functions on the half-space Jf=

R-xR* with aij=aH. Further, we assume that there are positive constants

m and M such that

(1.3) m* <2>«e> *y£¿,gM'

for all (t, x) e je and all unit vectors f in J?^. Thus the bilinear form

((b, c)) = b0c0 - 2 au(t, x)bicj
¿3=1

defines a Lorentz metric in je.

We can interpret a solution u of (1.2) as a scalar disturbance in a time

varying anisotropic medium occupying Mr. We study the energy of u in

a region of x-space which expands at least as fast as wave-fronts for L.

Let S(T) be the region at time T; formally we consider 5(7") as a domain

in the hyperplane t=T'm Jf. As Tincreases, the S(T) sweep out a region

D(0, oo) = U {S(T):T>0} in ¿e.

We say that region S(T) expands faster than light, or faster than wave-

fronts for L, if the following two conditions are met: First, the bound-

aries dS(T) sweep out a smooth hypersurface S' in Jf, which is the

lateral part of the boundary of D(0, oo). Second, the outer unit normal

«=(«0, «!,-•-, nN) on dD(0, oo) satisfies «0<0 and ((n, n))^0 along 5".

For example, for a fixed r the region S(T) = {(T, x):\x\^MT+r} expands

faster than light. If n is negative characteristic on S', then the dS(T) are

an expanding wave-front for L.

Suppose that the region S(T) expands at least as fast as light. If w is a

C2 function in Jf, we discuss its size in terms of the energy integral

S(w, T) = ( w2 + w2 + S aijwAw\Adx.

This paper gives conditions under which a solution u of (1.2) will satisfy

a lower bound of the form

(1.4) S(u, T) ^ Ce-,nT)ê(u, t)
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for F>t^0. In (1.4), C and y are positive constants, and / is a function

which increases without bound as F—>-co.

In particular we have the following results:

Result I. If kx(t, x) = 0(t~2), k2(t, x) = 0(t~1), and all \(ai})t\ = 0(t-i),

then (1.4) holds with/(F) = ln(F).

Result II. If kx, k2, and all \(au)t\ are bounded, then (1.4) holds with

f(T) = F.
Result III. If there is a constant c>l such that kx(t, x) = 0(t2c~2),

k2(t, x) = 0(t'=-1), and all ¡(a^^O^1), then (1.4) holds with f(T) = Tc.

For derivatives we use the notation dwjdt = wt and dwjdxi = wA. The

gradient Vn> is taken with respect to all N+\ variables; and |Vw[2=

wf+lf^w.2.
We introduce the quadratic form

p„je) = 2((b, i))((C, e)) - ((*, e)x(e, d)

for vector fields b, c, and f on ÄxfiA. As shown by Hörmander [2], this

form is positive definite if A and c are positive timelike vectors. [A vector

d=(d0, dx, ■ ■ ■ , dfi) is positive timelike iff d0>0 and ((d, rf))>0.] Notice

that Pb c(f) is linear in b and c. We use h to denote the timelike vector

h = (\, 0, • • • , 0) in RxRN. Since f,,,Ä(!)=ft+ lu-i ««ftf,, |Vw| and
(Fhh(VH'))1/2 are equivalent.

The starting point for the basic estimates is the formula

(1.5)     ¡2AwtLw = f (phyÀ(Vw) + ¿f (aif%w,{wiS) - Í ÂFh,n(Vw)
Jd Jd\ ij=x I        JdD

which is valid for any C1 function )i = X(t, x) and any C2 function w =

w(t, x) where D is a bounded domain with piecewise smooth boundary

and n is the outer unit normal along dD. This formula follows directly

from integration by parts.

2. Proof of Result II. In this section we consider (1.2) under the

assumption that there are constants such that

(2.1) |(«¿i),| ^ K;   kx(t, x) ^ Kx;   k2(t, x) = K2

in J%*. We will prove Result II of the Introduction as Theorem 2.3. §3

will outline the slight modifications which adapt the proof to the hypotheses

for Results I and II.

We start by developing the basic a priori inequality. Notice that no

boundary conditions are imposed; the choice of domains and the prop-

erties of Ffc,c(f) combine to make boundary conditions unnecessary.
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Let S(T) be a region in jc-space expanding faster than light. Let D(t, T)

be the region in -ft' swept out by the S(t) for t</<T; i.e.,

D(t, T) = {(/, x):xe S(t) and t < t < 7"}.

Then the boundary dD(r, T) is composed of three smooth pieces: S(T),

S(t), and the lateral portion along S'. The outer unit normal n =

(n0, nx, ■ ■ ■ , «v) on dD(r, T) is equal to h on S(T) and to —h on S(t).

Suppose v is a C2 function and D is one of the regions D(t, T) for

0^t<T. We develop a weighted ¿2 estimate for v and Vu in D in terms

of Lv. To do this we introduce an auxiliary function w = e*tv for a a

positive parameter. Computation shows that

e^Lv = Lw + 2awf — aw2.

Using the elementary inequality (X+ Y+Z)2^2 Y(X+Z) we get

e2*' \Lv\2^> 2(2olw,)(Lw - <y2w).

For ß>0, we multiply through by eßt and then integrate over D to obtain

J»t\„2e"\w%(2.2) fjVV" |Lt>|2 ^ 2a f fee^Lw - 2a3 (T<

/) /j /)
Integration by parts and the properties of« on dD give us

(2.3)

Meßt(w2)t=([ßeßtw2-(  n0eßiw2

^ ß ¡(eßtw2 + f    eß'w2 - f     ^'w2.
JJ J.S(r) J.S(Ï')
D

The next two lemmas provide an estimate for the other integral on the

right side of (2.2).

Lemma 2.1.    Suppose ßm2^2KN. Then

2 [\[eßtwtLw ^ iß JP'íV^VhO - j8{TfipH.H<y»)
(2.4) d n

+ f    eß'Ph,h(Vw).
Js(t)

Proof.    If X = exi and D = D(t, T), then formula (1.5) specializes to

(2.5) 2 Jj>WlLw + £/'Ph.n(Vw) = jj>{^,,h(Vvv) + 2 (a«),!».^.^.
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By assumption (1.3) we have
X N

¿3 = 1 í=l

But we also have

N

¿("iM.iW.i ^^\(au)i\\w.,\ \w.i\

V=i      ' »•—i

Since \ßm2~^KN, we can conclude that

(2.6) ^„.„(Vw) + 2 (««),*>., ^ è/5Fh,h(Viv).

The properties of n on 3F> yield the inequality

(2.7) f ¿"/»„.„(Vw) = f     ^.„(Vw) - f   e"'Fh.h(Vw).
Jan Jä<t> J.S(r)

Using (2.6) and (2.7) to estimate terms in (2.5) we obtain the inequality of

the lemma.

We now prove the basic a priori inequality.

Theorem 2.2.    Suppose v is a C2 function on D(0, oo). If <x>l, ßm2_

2KN, and 0_t<F, //ze« //¡ere are constants c{ such that

6¿ev+*IT*(v,T) + e(íl+2*u \Lv\2

(2.8) mr'T)

^ Cla/8   ff eß+2M(v2 + |Vi>|2) + c^^t).

D(t.T)

Proof.    Let D denote D(t, T) and let w=e*'v. Then we can combine

inequalities (2.3), (2.4), and (2.2) to obtain

//
*<'+*«» |H>|2 + 2oc

JS(T)
(Vw) + a.V]

(2.9) > «0 Íp'[í,i».i»(Vw) + 2aV] + 2a J    e"[Phih(Vw) + ocV].

From the expression of Phh(Vw) in terms oft; we can show that

PhM(V») = 2e2"[aV + PUVv)]
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n.h(Vw) ^ e^t-laV + lPhlh(Vi;)].

Thus (2.9) leads to the inequality

¡(e{ß+2°n\Lv\2 + 2*e{ß+2*)T f     [3aV + P„ h(Ve)]
JJ JSIT)
D

£ ajSJJe"+î"'t|«V + JPmÇV»)]
7)

+ 2ae<"+2*" f    [|aV + lPh.h(Vv)l
Js(t)

The desired inequality (2.8) now follows because of the hypothesis a>l,

the equivalence of Pnn(Vv) with |Vu|2, and the definition of S(v, T).

Theorem 2.3. Suppose u is a C2 solution of (1.2) in the closure of

D(t, oo). Then there are positive constants C and y, independent ofu, such

that

ê(u, T) j> Cé-lTê{u, r)

forallT>r.

Proof. Pick a fixed ß so that ßm2^.2KN. Since u is a C2 function we

can apply Theorem 2.2. Let D denote D(t, T). For a>l and 7>t£0,

we have

täeß+2*Tg(u, T) + [Llß+2M\Lu\2

n

^ c&ß ííe(ll+2M(u2 + |VM|2) + c2e(/i+M^(U, r).

n

From (1.2) and (2.1) we find

flV'+2",'|Lu|2 ̂  2 fiV^"^2«2 + K22|Vu|2).

D D

Let AT3 = max{A:2, K2}. It follows that

6x3e(ß+2*)T<?(u, T) £ rfeW+s-)'(Cia^ _ 2K3)(u2 + \Vu\2) + c2eiß+2^e(u,r).

n

Setting y=/9+2a for a sufficiently large we have

6aVr<f(u, T) à c^tiu, r).

The choice of C required for the theorem is now apparent.
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Corollary. Ifu is a nonnull solution of (1.2) in D(r, oo), then <?(u, T)

cannot decay faster then e~yT, where y is chosen as above.

Proof. Let C and y be taken as in the theorem. If t<o<T, then the

proof of the theorem also shows that

S(u, T) ^ Ce->Tê(u, a).

So if ümy^«, eyTS(u, F)=0, then S(u,a)=0 for all a>r. This would

show that w = 0 in D(t, co).

3. Remarks on Results I and III. This section indicates how the proof

of Theorem 2.3 is adapted to prove Results I and III. Again we consider

a given family of regions S(T) expanding faster than light.

Theorem 3.1.    Suppose the coefficients of (1.2) satisfy the bounds

(3.1) 1(0,1 Ú Kr1;   kx(t,x)^Kxt~2;    k2(t,x)^K2t~l

in D(t, cc)for some r>0. Suppose u is a solution of(\.2) in D(t, co). Then

there are constants C and y, independent of u, such that

S(u, T) ^ CT-yS(u, t)   for all T > r.

Proof. The pattern of proof follows that of §2 exactly except that

the weight functions X=eat are replaced by ¿=exp(a \r\(t)) = f. The

decay conditions imposed on the coefficients of (1.2) by (3.1) are those

required so that the weighted L2 integral for Lu ón D(r, T) can be domi-

nated by the terms in u2 and Ph,h(Vw) which arise from the a priori

estimate analogous to Theorem 2.2.

Theorem 3.2. Suppose there is a constant c> 1 such that the coefficients

of (1.2) satisfy the bounds

(3.2) \(aii)t\ <, Kt^i;   kx(t, x) = Kxt2^;   k2(t, x) < Kf*

in some D(t, co). Suppose that u satisfies (1.2) in D(t, co). There are con-

stants C and y, independent of u, such that

S(u, T)^C exp(-yFcK(w, t)   for all T > r.

Proof. Here again we follow the outline of §2 using this time the

weight functions A = exp(a.tc) in place of À=eat.
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