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BERGMAN  OPERATORS FOR  PARABOLIC EQUATIONS

IN  TWO  SPACE  VARIABLES1

DAVID   COLTON

Abstract. An integral operator is constructed which maps

analytic functions of two complex variables onto the class of real

valued analytic solutions of linear second order parabolic equations

in two space variables with real valued, analytic, time independent

coefficients. When the solution of the parabolic equation is inde-

pendent of the time variable the operator reduces to Bergman's

integral operator for elliptic equations in two independent variables.

I. Introduction. Although the analytic theory of elliptic equations has

been extensively investigated by many mathematicians (cf. the monographs

[1], [4], [8]), little has been done in developing an analogous theory for

parabolic equations (however see [2], [5], [6]). An important method in

the investigation of the analytic behaviour of solutions to elliptic equa-

tions has been the use of a variety of integral operators which map analytic

functions onto solutions of the elliptic equation. In order to undertake a

similar study of parabolic equations it would be desirable to have similar

tools at our disposal. An initial step in this direction was taken by Bergman

in [2] (see also [1, pp. 74-78]) who constructed an integral operator for

certain classes of parabolic equations in two space variables. However in

addition to having a very complicated structure and being applicable to

only a limited class of equations, the operator constructed by Bergman

is not an onto mapping. In particular Bergman's operator maps analytic

functions into a subclass of solutions of the differential equation which

have a Taylor expansion of a certain form. In this note we will overcome

the difficulties inherent in Bergman's approach and construct an integral

operator which maps analytic functions of two complex variables onto

real valued analytic solutions of the general linear second order parabolic

equation in two independent variables with real valued, analytic, time

independent coefficients. (Our analysis can easily be modified to include

the case in which the coefficients also depend on time.) In particular we
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will consider the parabolic equation (written in normal form)

(11)      «m + uvy + aix,y)ux + b(x,y)uy + c(x,y)u = d(x,y)ut

and make the assumption that the coefficients of equation (1.1) are entire

functions of their independent (complex) variables (with minor modifica-

tions we could have assumed only that these coefficients are analytic in

some polydisc in the space of two complex variables) and are real valued

for x and y real. When the solution of equation (1.1) is independent of t

we will show that our operator reduces to that of Bergman for elliptic

equations in two independent variables.

An alternate method to that of Bergman for constructing integral

operators for elliptic equations in two independent variables has been

given by Vekua [8]. In [6] Hill has constructed an integral operator for

parabolic equations which is analogous to that of Vekua for elliptic

equations. The advantages (and disadvantages) of our operator in com-

parison with that of Hill are comparable to a similar comparison between

the operators of Bergman and Vekua for elliptic equations (cf. [1, p. 2]).

We will not enter into such a discussion at this time, except to point out

that the kernel of our operator is considerably easier to construct than

that of Hill since the kernel of Hill's operator is expressed as an infinite

series, each of whose terms is computed by solving a complex Goursat

problem for an elliptic equation in two independent variables.

II. An integral operator for equation (1.1). We first define the non-

singular transformation of the space C2 of two complex variables into

itself by

(2.1) z = x + iy,        z* = x — iy.

Under such a transformation equation (1.1) assumes the form

(2.2) fJ22. + A(z, z*)Uz + B(z, z*)Uz* + C(z, z*)U = D(z, z*)Ut

where

1/(2, Z
* (=  + Z*     ¿-Z*     A

..      *,      IT    z + z*   z-z*\   ,   .,   z +
A(z, z*) = - a\-,-    + ib\-

4L   \     2 2/7 \     2 2/

(2.3)        B(z, z*) «(^•=-îrH(-s
2/
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Setting

(2.4) V(z, z*, t) = U(z, z*, Oexpj£ A(z, £*) d?

reduces equation (2.2) to the canonical form

(2.5) Vzz. + B(z, z*)Vz. + C(z, z*)V = D(z, z*)Vt

where

(2.6)
-f-Jo

B(z, z*) = B(z, z*) -       Az(z, D dl
Jo

C(z, z*) = -(Az + AB- C),

D(z, z*) = D(z, z*).

We now proceed to construct an integral operator which maps analytic

functions of two complex variables onto analytic solutions of equation

(2.5). In particular we look for solutions of equation (2.5) in the form

V(z, z*, t)

(2.7)

*

-<E \+lE(z,z*,t-T,s)f(-a-s2),r\
i Jh-t\=s J-i \2 I

ds dj
1/2|<-r| = á J-l \2 /  (1   —  S")

where <3>0,/(z, t) is an analytic function of two complex variables in a

neighborhood of the origin in C2, and E(z, z*, t, s) is a function to be

determined. The first integral in equation (2.7) is an integration in the

complex t plane in a counterclockwise direction about a circle of radius ô

with centre at /, and the second integral is an integration over a curvilinear

path in the unit disc in the complex í plane joining the points s= +1 and

5= —1. Substituting equation (2.7) into equation (2.5) and integrating by

parts (cf. [1, p. 11]) show that E(z, z*, t, s) must satisfy the differential

equation

(2.8)    (1 - s2)Ez.s - (lls)E„ + 2sz(Ezzt + BEZ, + CE - DEt) = 0,

provided we also assume that E(z, z*, t, s) is an analytic function of s for

|í|^l, t for ô0l^\t\^ôx (where ô0<ô<ôx), and (z, z*) in some neighbour-

hood of the origin in C2. Motivated by Bergman's analysis for elliptic equa-

tions in two independent variables we now look for a solution of equation

(2.8) in the form

(2.9) F(z, z*, t,s) = - +f s2nzn f P(2r,)(z, £*, 0 dl*.

Substituting  equation  (2.9)  into  equation   (2.8)  yields  the  following
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recursion formula for the coefficients F<2">:

p(2) _
2 ~     2 ~-C--D,
t V

(2.10)

(2n + 1)F

= -2

(2«+2>

ptt») + |fF<2») +  £ r   p<2„) ¿£* -  /5 P   F(<2n)
Jo Jo

dt,*

n = 1,2,

Setting F<2">(z, z*,i) = i"""1Ô(2")(z, z*> 0 in equation (2.10) yields the

following recursion formula for the Q{2n):

Q(2) ■2íC- 2D,

(2n + 1)2<2n+2)

= -2

(2.11)

*></£*«el2"' + rÄQ(2ri) + /cT e<2n)
Jo

+ (n +1)5 r e(2n) ¿/r - tß f" o(,2n) c/c*
Jo Jo

« = 1,2, • • • .

It is clear from equation (2.10) that each of the F(2"', «=1, 2, • ■ • , is

uniquely determined. In order to show the existence of the function

E(z, z*, t, s) it is now necessary to show the convergence of the series (2.9).

To this end we first majorize the functions Q{2n)(z,z*,t). Yet r be an

arbitrarily large positive number and let B0 be a positive constant chosen

such that for |z|<r, |z*|<r, we have

(2.12)

B(z, z*) «

C(z, z*) «

D(z, z*) «

B0

(1 _ zfm _ z*/r) '

Bo

(1 - z/rXl - z*¡r) '

Ba

(1 - z/r)(l - z*lr) '

where "«" denotes domination (cf. [1], [4]). We will now show by

induction that there exist positive constants Mn and e (where e is inde-

pendent of n and Mn is a bounded function of n) such that for |z|<r,
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|z*|<r, \t\<ôx, we have

Q(W <<: Mn22"è\(i + e)"

2n — 1
(2.13) / \—(2«-l) / *\-(2rc-l) / f   \-(2n-l)

This is clearly true for «= 1. Now suppose for n=k equation (2.13) is valid.

Then from equations (2.11) and (2.12) and the straightforward use of the

theory of dominants we have

Q(2,+2,<<M&22*+2(51+1(1+^

2/c + 1

Í B0     I r2 r2(k+l) r2\\
(2.14) X    1+-— [r +- +—-~ + —

I       2k - 1 \       (2k - 1)     (2/c - 1)23,.      2dJ )

M1-^    I1-;)    l1-s)   r ■
In the derivation of equation (2.14) we have made use of the fact that

/«2<51(1 -tßoi)-1 and that if/«g then

f«g(l- z/r)-(l - z*lr)-k(\ - tlWJr*

for arbitrary positive integers j, k, and /.

By setting

(2,5)    «„, - «,(! + .,-(, + ^(2, - , + r + 3=)}

we have shown that equation (2.13) is true for n=k + l, thus completing

the induction step. Note that for « sufficiently large we have Mn+1^M„,

i.e. there exists a positive constant M which is independent of« such that

Mn^M for all «.

We now turn to the convergence of the series (2.9). Let *0^ 1 and a> 1

be positive constants and let |j|^s0, |z|<r/a, |z*|<r/a, and <50 = l'l = ¿>i-

Then (l-|z|/r)>(a-l)/a, (l-|r*|/r)>(a-l)/a, (l-\t\l2ôx)^i, and
from equation (2.14) it is seen that the series (2.9) is majorized by the

series

}_f rMn2in-V0nôï(l + e)V"-2

ô0     ¿x   àT\2n - IX« - I)4""2

If a is chosen such that \6s\dx(\-\-e)a?ÖQi(a.—1)~4<1, then the series

(2.16) is convergent. Since r is an arbitrarily large positive number and s

is arbitrarily small and independent of r, we can now conclude that the

series (2.9) converges absolutely and uniformly for |z|<r, |z*|<r, |j|^j0>
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^0 = 1^1=^1 f°r r> ^i> and s0 arbitrarily large and <50>0 arbitrarily small,

i.e. E(z, z*, t, s) is an entire function of its independent variables except

for an (essential) singularity at i=0.

We have now shown that the operator P2 defined by

(2.17) 2m

U(z, z*, t) = P2{f}

-expi-Jj A(z,Z*)d£*\

X i í+1E(z, z*, t - r, s)f (f (1 - s2)r) -^~
J\t-r\=S J-l \2 /  (1   - S2)1'

exists and maps analytic functions which are regular in some neighbour-

hood of the origin in C2 into the class of (complex valued) solutions of

equation (2.2). An elementary power series analysis (cf. [8, pp. 55-56])

coupled with Hormander's generalized Cauchy-Kowalewski theorem [7]

shows that solutions of equation (2.2) which are real valued for t real and

z*=z (i.e. x and y real) are uniquely determined by their values on the

characteristic plane z* = 0. Furthermore, since the coefficients of equation

(1.1) are real valued for x and y real, the operator Re P2{f} (where "Re"

denotes "take the real part") defines a real valued solution of equation

(1.1) provided we set z* = z and keep / real. Evaluating Re P2{f) at z*=0

and keeping / real gives

i/(z, o,/) = —: <t       PT/if-a-sV)
477Í   J|<-r|=i J-l L    \2 /

(2.18)

+ /(0,T)exp(-JV(0, £*)#*)

ds dr

where

(1 _ s2)i'2(t _ T)

xeW-£f(0, £*)<*£*)

f(z,t)=f(z,t)   and    Ä(z,z*) = A(z,z*).

A solution of the integral equation (2.18) is given by [1, p. 12]

(2.19)
U(0,0J0exp(-£i(0, £*)<*£*

ds
„2
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where y is a rectifiable arc joining the points j= — 1 and s= +1 and not

passing through the origin. Equations (2.18) and (2.19) show that if

U(z, z, t) is real valued for t real, then/(z, t) can be chosen such that

U(z, 0, t) assumes prescribed values. We thus have the following theorem :

Theorem. Let u(x, y, t) be a real valued analytic solution of equation

(1.1) defined in some neighborhood of the origin. Then u(x,y, t)=U(z, z, t)

can be represented in the form

U(z, z, t) = Re P2{f}

= Re
(2.20)

-exp(-J^(z,r)^*
.2771

i,J>*'--»(^-Ht^
where E(z, z*, t, s) is defined by equations (2.9) and (2.10) and is an entire

function of its independent variables except for an essential singularity at

i=0, and f(z,t) is defined by equation (2.19) and is analytic in some

neighborhood of the origin in C2. Conversely, for every analytic function

f(z, t) defined in some neighbourhood of the origin in C2, equation (2.20)

defines a real valued analytic solution of equation (1.1)/« some neighbourhood

of the origin.

The representation (2.20) can now be used to analytically continue

solutions of parabolic equations. For the type of theorems which can be

obtained the reader is referred to the results for elliptic equations in two

independent variables obtained in [1]. The operator defined by equation

(2.20) is in fact closely related to Bergman's operator for elliptic equations

in two independent variables. To see this we consider the case in which

u(x, y, t)=u(x, y) is independent of t and hence satisfies the elliptic

equation

(2.21) uxx + uyy + a(x, y)ux + b(x, y)uv + c(x, y)u = 0.

In this situation the associated analytic function f(z, t)=f(z) is inde-

pendent of t, and termwise integration in equation (2.20) yields the

representation

-£/l(z,£*)if?*)U(z,z)= Re

(2.22)

U/2
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where

CO /"*•

(2.23) F(z, z*, s) = 1 + S s2nzn      P{2n\z, t*) dt*

n=l J«

with the P{2n) being defined recursively by

p<2) _  _2

(2.24)    (2n + l)F(2"+2) = -2 p<2M> + £p(2n) +  ¿J T   F(2n) d£«

Jo

n = 1,2,

A comparison of equations (2.22)-(2.24) with the corresponding formula

in [1] shows that the operator defined by equation (2.22) is identical with

Bergman's operator for elliptic equations in two independent variables.

In closing we note that it is also of interest to compare our integral

representation (2.20) for parabolic equations in two space variables with

the corresponding representation for elliptic equations in three inde-

pendent variables obtained in [3].
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