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OVER A BOUNDED  SUBSET OF Rn

homer f. walker

Abstract. The objective of this paper is to present an estimate

bounding the L2-norm of a function over a bounded subset of Rn

by the L2-norms of its derivatives of arbitrary order over all of R"

and the L2-norm of its projection onto a finite-dimensional space of

functions with bounded support. The estimate essentially generalizes

inequalities of Friedrichs [1, p. 284] and Lax and Phillips [2, p. 95].

An application of the estimate is made to the Fredholm theory of

elliptic partial differential operators in R".

1. Introduction. Let L2(Rn ; Ck) be the usual Hubert space of equivalence

classes of C^-valued functions on Rn whose absolute values are Lebesgue-

square-integrable over Rn. Denote the norm on L2(Rn; Ck) by || ||. For

each positive integer m, let Hm(Rn; Ck) be the Hubert space consisting of

those elements of L2(R"; Ck) which have strong partial derivatives of

order m in L2(R"; Ck). To specify the norm on Hm(Rn', C*), first define

1/2
2m

for an element u of Hm(Rn; Ck), where

«(f) = (27r)-"/2 i   e~Hxu(x) dx
JR"

is the Fourier transform of u. Then take the norm of an element u of

Hm(Rn;Ck) to be  \\u\\m = {\\u\\2+ \\dxu\\2Y12. Given a subset D of Rn,

denote by L2(D; Ck) and Hm(D; Ck) the subspaces of L2(Rn; Ck) and

Hm(Rn; Ck), respectively, consisting of elements with support in D.

Consider the following theorems.

Theorem (Friedrichs [1, p. 284]).    If a bounded subset D of Rn and a

number £>0 are given, then there exist an integer A/>0 and elements

Received by the editors November 1, 1971.

AMS (MOS) subject classifications (1969). Primary 35B45, 35J45, 35F05.
Key words and phrases. Calculus inequalities, Friedrichs inequality, first-order elliptic

operators, indices of elliptic operators, Fredholm operators.

© American Mathematical Society 1973

103



104 H.  F.  WALKER [March

wi> ' ' ' > wm ofI-áP'> Ck) such that the estimate

M

l|M||2^£||d^ll2 + 2l(",w3.)l2
í=i

holds for all u in HX(D; Ck).

Theorem (Lax, Phillips [2, p. 95]). If a number R>0 is given and if

n^.3, then the estimate

Í       \u(x)\2dx^      *'      ||%h||«
J\x\áR 2(« — 2)

holds for all u in Hx(Rn; Ck).

The first objective of the following is to demonstrate a general estimate

which, despite a certain lack of sharpness, includes in essence the two

estimates above as special cases. The second objective is to apply this

estimate toward obtaining new bounds on the Fredholm index of a linear

elliptic first-order partial differential operator in R2 whose coefficients

become constant outside a bounded subset of R2.

2. The estimate. For each positive integer p, denote by ttp the pro-

jection onto the subspace of L2(Rn; Ck) spanned by functions of the form

xaXB(x)c, where a is a multi-index with 0^|a|</>, c is a vector in Ck, and

XB is the characteristic function of the ball BR = {x e Rn:\x\^R}, i.e.,

XnR(x) = 1    if |x| ^ R,

= 0   if |x| > J?.

Denote by 7r0 the zero operator on L2(Rn; Ck). Then one has the following

estimate.

Theorem. Suppose that there are given positive integers n and m and a

number e, 0<e<l. Then there exists a calculable constant Cn¡me depending

on n, m, and s for which the estimate

r c     R2m
\u(x)f dx ̂  uvuf +      c— na>f

J\x\iR (2p + n — 2m)

holds for all nonnegative integers p> (m—n\2) and all u in Hm(Rn; Ck).

Before proving the theorem, the lemma below will be established. It will

be seen that the theorem, the proof of which follows the proof of the

lemma, is an easy corollary to the lemma.

Lemma. Suppose that there are given positive integers « and m and a

number e, 0<e< 1. Then there exists a calculable constant C„ m £ depending



1973] THE  ESTIMATION   OF  THE L2-NORM  OF  A   FUNCTION 105

on n, m, and s for which the estimate

Jp X)2m
\e\-im toi2 & ^ „ L "■""; ,2mtl_,) uf

«" (2p + n — 2m)2mn c)

holds for all  <f>   in   (I—ttp)(L2(Br; CkJ)   and  all nonnegative   integers

p*>(m—n¡2).

Proof of the Lemma. Let p be a nonnegative integer greater than

(m—n/2) and let <j> be an element of (I—n-P)(L2(BR; Ck)). Then for any

K>0,

¡\e\-ta\$(ey\*de

= f    if r2"' \$d)\2 de + f    \ar2m\$(ç)\2de

^k-2'"h\\2 + \    \ersm\$(e)fde

by Parseval's relation. Now

r

fa) = (2*)-*'*      e-'**<p(x) dx
JR"

J\x\äl{\j=r        j\ I

since <f> is in (I—ttv)(L2(Br; Ck)). Therefore

|ftf)| ^ (27r)-/2f^( f |jt|'|#x)|4c]

< (2ir)-»/sfMi-i f ixi^^r^H

°°   \P\>   D'+n/2jl/2

< (2ir)-"<2 S !^-Jl-£ZL_|U||
¿j\(2j + nf'2  m

where /ln=Js„-1 dw is the area of the unit sphere in Rn. Continuing,

oo l£l3'+î>   Di+v+n/2 Ai.12

\fa)\ < (2ny"/2f—!a—-^—- |U||
á(j + py.(2j + 2p + nf2m

p[(2p + n)1
= (277) e' _.,„_    ,        ,1/2   H 9*11-
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Then

/• 2KRn2v+nA    i  f

W2m \$(£)\2 dt rg (2n)-n ——-H m2»-2™ d^
J\i\^K (p]-)(2p + n)[J\t\síK

Hf

,2KRif2i>+n~2mn2v+nA 2

^  (277)-

*K
R2

and so

Í m-2m\$(m2dç

<KT

(pl)2(2p + n)(2p + n-2m)

1 + (2tt)~
^KR/sru^P+n^*(KR)

(p\)\2p + n)(2p + n - 2m).

If Kis taken to be (2p+n—2m)n~E>/R, then the inequality becomes

m2-

l \£\-2m\fa)\2d!;
R2m

(2p + n- 2m)tmll-*)

_n e2^+-2^'"c\2p + n- 2m)'2v+n)(1-t)-1A2n
1 + (2-rr)-

(pl)2(2p + n)

To prove the lemma, it will suffice to show that the function

e2(2p+n-2m)a-E',2p _j_  „  _ 2m)(2»+'l)l1-£'-1

Hf.

F(P) =
(p\f(2p + n)

is bounded from above for all nonnegative integers p greater than

(m—«/2) by a function G(p) which becomes monotone decreasing after a

finite, determinable number of integers p. Indeed, if such a function G(p)

exists, then the desired constant CnmE may be taken to be the calculable

quantity

Define

G(x)

1 + (27r)-nA2        sup        G(p)
î>^0;î>> (m—n/2)

e2(2x+n-2m)'1''1'r2x    r    n  _ 2m)(2^+n)(1-£'-l

jexpl2     log s ds\ \(2x + n)

for all nonnegative x greater than (m — n/2). Since

,'Y2exp12    log s ds\ ^ (p f
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for all nonnegative integers/?, it is immediate that F(p)^G(p) for all non-

negative integers p greater than (m — n/2). Furthermore, G is monotone

decreasing for large values of its argument, because a number x0 may be

easily found beyond which

7- [log G(x)] =        4° ~ £)        + 2(1 - £)log(2x + n - 2m)
dx (2x + n — 2m)

,  2[(2x + n)(l - e) - 1] 2
+ -— 2 log x —-

(2x + « — 2m) 2x + n

is negative. This completes the proof of the lemma.

Proof of the theorem.    Let p be a nonnegative integer greater than

(m—n/2) and let u be an element of Hm(Rn; Ck). Note that

f \(l-trp)u(x)\2dx
J\x\SR

SUP \(<f>, (/   -   7T»|2
<t>e(I-vpHLt<BZ;Ct));\\tl>\\ Si

= sup \(<f>, u)\2
<M/-1r„)(Z2(-BÄ:Ct));||<i>l!Si

: SUp f
JR"

nrm<¿(!)iir¿(£)df

„Itsup |f|-2mlte2^   II3M,

= (2p + n - 2m)2m(1-£) " *   "

where Cnmt is the constant in the estimate of the lemma. The theorem

then follows immediately from the observation that

f        |«(x)|2 dx = |Ku||a + f        |(/ - 7T>(X)|2 dx
J\x\AR J\x\äR

and the proof is complete.

3. An application. After a brief sketch of the Fredholm theory of linear

elliptic first-order partial differential operators in Rn whose first-order

coefficients become constant and whose zero-order coefficients vanish

outside a bounded subset of Rn, the theorem of the preceding section will be

applied toward establishing new bounds on the indices of such operators

when the number of independent variables is two. (A linear first-order
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partial differential operator

Au(x) = 2 Af(x) — u(x) + B(x)u(x)
¡=i dx{

with domain Hx(Rn; Ck) is said to be elliptic if det| 2?=i ^íOOÍíI^O for all

x in Rn and all nonzero e in Rn.) Similar applications of the theorem in its

full generality will be made in the sequel to [4], For details relevant to the

following discussion, the reader is referred to [3] and [4].

Given a positive number R and a linear elliptic first-order partial

differential operator A0 with domain Hx(Rn; Ck) having constant co-

efficients and no zero-order term, denote by E(A0, R) the set of all linear

elliptic first-order partial differential operators with continuous zero-order

coefficients and continuously differentiable first-order coefficients whose

coefficients are equal to those of A0 outside the ball BR. Denote by M(A0, R)

the subspace of HX(R"; Ck) consisting of all elements u of HX(R"; Ck) for

which A0u has support in BR, and let A be an operator in E(AQ, R). It is

apparent that the null space N(A) of A is contained in M(A0, R). Since

the support of Au is contained in BR for each u in M(A0, R), the re-

striction of A to M(A0, R) may be thought of as a bounded operator from

M(A0, R) to L2(BR, Ck). It is shown in [3] that the dimension dim N(A)

of N(A) is finite, and, since the adjoint operator A* of A is an operator

in E(A*, R), it follows that dim N(A*) is also finite. It is shown in [4] that

the restriction of A to M(A0, R) is a bounded Fredholm operator from

M(A0, R) to L2(BR; Ck). If the number of independent variables is at least

three, then the index of this Fredholm restriction of A is [dim N(A)—

dim N(A*)]. If the number of independent variables is two, however, the

index cannot be prescribed so elegantly. In [5], it is shown that if the

number of independent variables is two, then the index of the Fredholm

restriction of A is at least [dim N(Af) — dim N(A*)—k] and at most

min{[dimN(A)—dimN(A*)], [dimN(Af)-dimN(Af)]}, where Af denotes

the operator in E(A0, R) consisting of the first-order terms of A. It is a

corollary to the following lemma, whose proof employs the theorem of the

preceding section, that the index is at least [dim N(A) —dim N(A*)—2k]

and at most [dim N(A) — dim N(A*)]; thus the index is bounded by

quantities defined by the operator A alone.

Lemma. If A is an operator in E(A0, R) and if the number n of independ-

ent variables is equal to two, then the dimension of the orthogonal comple-

ment of A(M(AQ, R)) in L2(BR; Ck) is at least dim N(A*) and at most

[dim N(A*) + 2k].

Proof. First note that the restriction of any element of N(A*) to BR

is orthogonal in L2(BR; Ck) to A(M(A0, R)). Hence the dimension of the
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orthogonal complement of A (M(A0, R))inL2(BB; Ck) is at least dim N(A*).

To show that the dimension of the orthogonal complement of

A(M(A0, R)) in L2(B%; Ck) is at most [dim N(A*)+2k], first suppose that

an arbitrary element v of L2(BB; Ck) is given. Since A has bounded co-

efficients, there exist positive constants cx and c2 for which the estimate

\(Au,v)\^[í        \Au(x)\2dx)m\\v\\

(     J\x]äR )

holds for all u in HX(R2; Ck). Noting the elliptic estimate || d\u || ̂  const || A0u ||

for elements u of HX(R2; Ck), one then sees as a particular consequence

of the theorem of the preceding section that there exists a positive con-

stant c for which the estimate

\(Au,v)\ ^ c{\\7rxu\\2 + \\A0u\\2f12 \\v\\

holds for all u in HX(R2; Ck). Denote by L(A0, R) the set of all elements

u of HX(R2; Ck) for which A0u is constant in BB. The set of ordered pairs

{[ttxu, A0u]:u eL(A0, R)} is a pre-Hilbert space with respect to the norm

|| [ttxu, ^40m] II ={ ¡I77-!" II2+ MoMl!2}1/2> and it follows from the above estimate

that the assignment [trxu, A0u]-^-(Au, v) is a bounded linear functional on

this pre-Hilbert space. The Riesz representation theorem then implies that

there is a unique element of the completion of this pre-Hilbert space which

represents this bounded linear functional. That is to say, there exists a

unique w in trx(L2(R2; Ck)) and a unique z in the closure of A0(L(A0, R))

in L2(R2; Ck) for which the relation (Au, v) = (wxu, w) + (A0u, z) holds for

all u in L(AX, R). Note that both w and z are constant in BR and that w

vanishes in R2—BB.

Now let arbitrary elements vx, • • ■ , v2k+x of the orthogonal complement

of A(M(A0, R)) in L2(BB; Ck) be given. The lemma will be proved if it

can be shown that there exist scalars a.x, ■ ■ ■ , <x2k+x, not all zero, such that

the linear combination a.xvx+ ■ ■ • + oc2i.+lr2i.+1 can be extended to an

element of N(A*). It follows from the above discussion that there exist

elements wx, ■ ■ ■ , w2k+x of trx(L2(R2; Ck)) and elements zx, ■ ■ ■, z2k+x of the

closure of A0(L(A0, R)) in L2(R2; Ck) for which the relation

(Au, v¡) = (ttxu, wf) + (A0u, Zj)

holds for all u in L(A0, R) and for each/, 1 ̂ j^2k+1. Since the elements

H'i> ' ' ' > H'2*+i an<3 zx, ■ ■ ■ , z2k+x ave constant C*-valued functions in BR,

there are scalars <x.x, ■ • • , oc2k+x, not all zero, which are such that the

functions JíS1 «¿w\, and J^t1 a;z3- vanish inside BB. (In particular, the
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function ^ÏÏ1 %w»¿ vanishes on all of Rn.) Then the relation

(2Jt+l \ / 2ÍH-1 \

Au, 2 «Vi) = Uo"»2«3-Zij

holds for all u in F(/40, R). Now suppose that w is an arbitrary element of

HX(R2, Ck). It is shown in [4] that u may be uniquely written as a sum

u = ux+u2, where ux and u2 are in L(A0, R) and M(A0, R), respectively.

Then one has

(2/H-l 2fc+l \ / 2Í.+1 V / 2k+l \

Au, 2«í»í - 2aízí) = (^"i' 2wi) - [Aui> 2aízí)
3 = 1 3 = 1 ' \ 3 = 1 ' * 3=1 '

(24+1 \ / 2ÍH-1 \

^"2.2aíüí) - MM2,2a¿zíj-

The first and second terms on the right-hand side cancel, since

(2ÍC+1 \ / 2ÍC+1 \

Au^XjvA = \A0ux, 2 «iZjl

and since the coefficients of A are equal to the coefficients of A0 in R2—BR.

The third term on the right-hand side is zero, since u2 is in M(A0, R) and

since each v¡ is orthogonal to A(M(A0, /?)). The fourth term on the right-

hand side is zero, since the support of Au2 is contained in BR. Conse-

quently,
2fc+l 2k±l \

= 0
(2ÍH-1 2fc+l \

Au, 2 o.¡Vi - 2 a^í)
3=1 3=1 '

for all u in HX(R2; Ck). This is to say that (2ZÍ1 «Ä-SS1 <W) is an
extension of 2ÍÍ1 u-Pi to an element of N(A*), and the lemma is proved.
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