
proceedings of the
american mathematical society
Volume 38, Number 1, March 1973

REALCOMPACTIFICATIONS   OF  PRODUCTS

OF  ORDERED  SPACES

WILLIAM  G.   McARTHUR

Abstract. The equality v(Xx Y)=vXxvY is studied for the

case when one of the factors is a linearly ordered topological space

(LOTS). Among the results obtained are the following:

1. If A' is any separable realcompact space and Fis any LOTS of

nonmeasurable cardinal, then v(XxY) = vXxvY.

2. If X is a nonparacompact LOTS, then there is a paracompact

LOTS F such that v(XxY)^vXxvY.

3. For any pair X, Y of well-ordered spaces, v{XxY) =

vXxvY.

The circumstance in which the Hewitt realcompactification v(Xx Y) of

the product Xx Y and the product vXxv Y of the respective Hewitt real-

compactifications of the factors are equivalent extensions of the space

XxY has been studied by many researchers in a variety of contexts. The

question of the equivalence of these two extensions was first considered by

Hewitt in his fundamental paper [11]. Since then, the problem has been

attacked from the points of view of general topology ([1], [2], [3], [8], [9],

[17]), uniform space theory ([10], [12]), function space theory ([13], [14],

[15]), and hybrid theories [16]. A complete understanding of the prop-

erties of the spaces X, Y, and Xx Y that essentially influence the equality

v(Xx Y) = vXxvY has thus far proved to be elusive. The rather esoteric

notion of a measurable cardinal [7, p. 161] appears with annoying regular-

ity in the theory. As we indicate in §2 below, cardinalities of the spaces in

question can be essential to the validity of the equality v(Xx Y)=vXxvY

apart from the measurability pathology. Spaces in which the continuous

real-valued functions are completely determined by the compact subsets

(k'-spaces) seem to play an important role ( [2], [13], [15]). We suspect that

the rc'-spaces are relevant to the problem simply because these are the

spaces which have nicely behaving real-valued function spaces equipped

with the compact-open topology. In fact, one can find many of the known

theorems for v(Xx Y) = vXxv Y implicit in the chapter on function spaces

in [4].
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In the present paper, we retreat from the general context to consider the

equality v(Xx Y)=vXxvYin the more restrictive situation when one of

the spaces X or y is a linearly ordered topological space (hereinafter de-

noted as "LOTS"). Among the results obtained is the fact that in the cate-

gory of well-ordered topological spaces (such a space will hereinafter be

denoted as "WOTS") v(Xx Y) = vXxvY holds universally with no

restriction on cardinality. Further, it is established that if X is a separable

realcompact space ("space" will always mean completely regular Haus-

dorff space in the sequel) and T is any LOTS of nonmeasurable cardinal,

then v(Xx Y)=vXxvY. It is finally determined that if A' is a nonpara-

compact LOTS, then there is a paracompact LOTS Y such that card X=

card Y andv(Xx Y)j±vXxvY.

1. Terminology and notation. Our basic references for notation are [6]

and [7]. For the convenience of the reader, we summarize below the

pertinent parts of [6] and other definitions and results which will be referred

to in the sequel.

1.1. For a space X, vX denotes the Hewitt realcompactification of X

[7, pp. 116-119]. The symbolism v(Xx Y) = vXxvYmeans that the space

Xx Y is C-embedded in the space vXxvY.

1.2. For an ordinal a, W(a) denotes the ordinal space of all ordinals less

than a equipped with the order topology.

1.3. The smallest ordinal of cardinality Xa is denoted by coa; we will take

the point of view that the only distinction between Xa and cwa is one of

notation.

1.4. Let ¿be a LOTS. AgapofL is defined as a Dedekindcut (/l|ß)such

that A has no last element and B no first. If A = 0 or B= 0, (A\B) is

called an end-gap. The linearly ordered set consisting of L together with all

gaps of L is denoted by L+.

1.5. Let L be a LOTS and let u=(A\B) be a gap of L. If h is not a left

end-gap, then the left character of u is the least ordinal X which is cofinal

with A. If « is not a right end-gap, then the right character of u is the least

ordinal p such that p* ("*" denotes reverse order) is coinitial with B.

1.6. (i) Let L be a LOTS and let a>a be any regular initial ordinal. An

increasing or decreasing sequence s = {xa}a<B> of points of L+ is a Q-

sequence if for every nonzero limit ordinal X<ojx, the limit in L+ of the

segment {xa}a<x of s is a gap of L.

(ii) If j is a (2-sequence and if the gap u is the limit of the entire

sequence s, s is called a Q-sequence at u.

(iii) A gap u is called a Q-gap from the left (right) if there exists an

increasing (decreasing) ¿»-sequence at u.

(iv) A gap u is called a Q-gap if it is a Q-gap from the left and from

the right (or the appropriate one if u is an end-gap).
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1.7. Let X be a LOTS. For each gap u of X add elements lu and ru

(or only the appropriate one if u is an end-gap) to form the LOTS X"

ordered in the natural way (lu<ru) preserving the order of X. Form X'

from X" by deleting every element lu for which the gap u is a Q-gap from

the left, and every ru for which « is a Q-gap from the right. Then, A' is a

dense C-embedded subspace of X' and hence X c X' c vX. If card X is

nonmeasurable, then X'=vX (see [6, pp. 359-360]).

1.8. (Gilman and Henriksen). A LOTS JIT is paracompact if and only if

every gap of X is a Q-gap. A LOTS X is realcompact if and only if every

gap of X is a nonmeasurable Q-gap.

1.9. (Glicksberg). If Xx Y is pseudocompact, then v(Xx Y)=vXxvY.

1.10. (Comfort). If X is locally compact, realcompact of nonmeasurable

cardinal, then v(Xx Y)=vXxvY for every space Y.

1.11. (Hager). If X and Y are spaces such that X={jn Xn, F=U„ Yn,

Xn is completely separated from X— Xn+X and Yn is completely separated

from Y— Yn+X for each «, and Xn x Y„ is pseudocompact for each n, then

v(Xx Y)=vXxvY.

2. Linearly ordered spaces and v(Xx Y). It is established in [6] that a

gap u of a LOTS X is not a ß-gap from the left (right) if and only if every

real-valued continuous function on X is constant on a left (right) interval

at u. The following theorem indicates that the "size" of the factors can in

some cases determine the validity of the equality v(Xx Y) = vXxvY.

Theorem 2.1. Suppose X is a nonparacompact LOTS of nonmeasurable

cardinal. Let {ux}XeA be the family of all gaps of X which are not Q-gapsfrom

the left and {up}peP be the family of all gaps of X which are not Q-gaps from

the right. Let {cox}xeA be the collection of left characters of {ux}ÀEiX and

{°Jß}ßeB be the collection of right characters of {up}pEP. Let toy = inf{co^:

£ e A (JB}. Let Y be a realcompact space which has a dense subspace D such

that card D<ojy. Then v(YxX) = vYxvX.

Proof. Let / be a continuous real-valued function on YxX. We wish to

extend/continuously to YxX'. For each point y of Y,f\{y]xX, can be

extended continuously to the function fy from {y} x X' to the real line.

Define f (y, p)=fy(p) for y in Y and p in A". To show that/is the desired

extension off, it suffices to show that, for each point/? of X' — X, fis con-

tinuous on the space Yx(X(J{p}). Let p be a point of X'— X. We will

assume that p = lux for some X e A, the other case being similar. For each

point d of D, there is a real number r\d and a point xd of X such that/á is

constantly equal to r\d on {d} x [xd, lu ] (see [6, 10.6]). Our cardinality

hypothesis on the set D ensures that we may choose a point x of X such

that xd<x'<lu  for every d in D. It is easy to see that, for every point y of
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Y,fy is constant on {y} x [x', /UJ. Now, choose any point x" of Zsuch that

x' <x"<lUx- Let j0 be any point of T and £>0. Then, there is a neighbor-

hood U of j0 and a neighborhood (xx, x2) of x" with x'^xx<x"<x2<lux

such that f*(Ux(xx, x2))'=(f(y0, x")-s, f(y0, x") + e). Then,

û(Ux(xx, lux])^(f(y0, x")-e,f(y0, x") + e)=(f(y0, lux)-e,f(y0, lu¡)+¿).
[The fact that (xx, lu>\ is a neighborhood of lUx in Xvj{lu>} is evident from

the construction of A"', noting that (xx, lU)\ = (xx, ru^)r\(XKj{lux\).]\\

Corollary 2.2. Let Y be a separable realcompact space. Then, for

every LOTS X of nonmeasurable cardinal, v(Xx Y) = vXxvY.

Proof. If X is paracompact, then X is realcompact and the situation is

trivial. If Xis nonparacompact, then the result follows from 2.1 with the

remark that cox^my since a gap with left (right) character co0 is a Q-gap

from the left (right). ! !

Corollary 2.3. Let Y be a countable space. Then, for every LOTS Y of

nonmeasurable cardinal, v(Xx Y) = vXxvY.

Remark 2.4. It was established in [16] that there are spaces X and Y

with Accountable and Y with nonmeasurable cardinal such that v(Xx Y)^

vXxvY. In fact, it can be shown that if Fis any nonrealcompact extension

of the countable discrete space, then there is a countable space .y such that

v(Xx Y)^vXxvY.

Theorem 2.5. If X is a nonparacompact LOTS, then there is a para-

compact LOTS Y such that v(XxY)^vXXvY.

Proof. Let m be a gap of X which is not a Q-gap. We assume for

definiteness that u is not a ß-gap from the left. Let {x„}a<(a be an increasing

sequence in X with limit u. Let E={x„:a is a nonlimit ordinal<a»a} and

let F=ExZ ("Z" denotes the discrete space of integers) be equipped with

the lexicographic order. Finally, let Y=FKJ{IU} be equipped with the

order topology where /„ follows all elements of F. Since Fis a discrete sub-

space of Y, Y is paracompact. For each xa in E, let/ff be a continuous

function from Xkj{Iu} to the closed interval [0, 1] such that/ff(/J = 0 and

fa(x) = \ for every x^xa and every x>!„. [We can do this since {x:

x^xa}\J{x:x>l„} is closed.] Define the real-valued function/on Xx Y

by the rule:

f(x,y)=l, if ;> = /„,

—fAx),   if y = (xa,z).

It is not hard to see that/is continuous on Xx Y. We show that/cannot

be continuously extended to the point (/„,/„) of vXxvY. Let U be a

neighborhood of (/„, /„) in vXxvY. Choose a point x„ of E such that
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(x, y) is in U whenever xa<x<lu and (xa, 0)<y. Choose a point x of Z

such that xa<x<lu and/ff(x)<|. Then, (x, lu) and (x, (xa, 1)) are both

points of (/and \f(x, lu)—f(x, (xa, Yj)\ = \\—fa(x)\>\. Thus, /cannot be

continuously extended over vXx vY.W

Remark2.6. If the LOTS Xin 2.5 has nonmeasurable cardinal, then Y

is realcompact. We may construct a space T from Y by an appropriate

topological sum so that Tis a paracompact LOTS, card T=card X, and

v(Xx T)¿¿vXxvT. Thus, barring measurable cardinals, we have shown

that if X is a nonrealcompact LOTS, there is a realcompact LOTS Tsuch

that card 7=card X and v(Xx T)9^vXxvT.

Remark 2.7. Theorem 2.5 also indicates that the cardinality criterion

of Theorem 2.1 is critical. Notice that the cardinality of Y in 2.5 is pre-

cisely the left character of the gap u.

3. Well ordered spaces and v(Xx Y). The situation for well-ordered

spaces is simple and satisfactory. Our main result of this section is that, with

no restriction on cardinality, v(Xx Y) = vXxvY always holds in the

category of well-ordered topological spaces. We begin with a few pre-

liminary results.

Lemma 3.1.    Every paracompact WOTS is realcompact.

Proof. If W(a) is a paracompact, noncompact WOTS, then a is an

endgap of character co0. Thus, W(a) is a countable union of compact

subspaces and is realcompact [7, 8.2].!!

Lemma 3.2.    A nonparacompact WOTS is pseudocompact.

Proof. Let W(a) be a nonparacompact WOTS. Suppose /is a real-

valued continuous function defined on W(a). Then, there is an ordinal

t<c such that/is constant on the interval [t, a). But, the interval [0, t]

is compact and hence/is bounded on the set [0, t]U[t, a)= W(a).\\

Lemma 3.3. IfW(a) and W(t) are pseudocompact WOTS, then W(o)x

W(t) is pseudocompact.

Proof. Note that every WOTS is locally compact. The result now

follows from [5, 3.3 and 3.4].!!

We now state and prove the main result of the section.

Theorem 3.4. For each pair of ordinals o and r, v(W(a)x W(t)) =

v(W(a))xv(W(r)).

Proof.    Case I. Both W(a) and W(t) are realcompact.

There is nothing to prove in this case.

Case II. Both W(a) and W(r) are nonrealcompact.
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By 3.1, 3.2, and 3.3, we conclude that W(a)x W(t) is pseudocompact.

But, then by Glicksberg's theorem (see 1.9), v(W(a)x W(t)) = v(W(o))x

v(W(t)).

Case III.  W(a) is realcompact and W(r) is nonrealcompact.

If W(o) is compact, then Glicksberg's theorem implies the result. If

W(o) is noncompact, choose an increasing sequence xx, x2, • • ■ of non-

limit ordinals whose limit is a. Then, W(a)=\J^Zx rV(x„), each W(xn) is

completely separated from W(o)—W(xn+x), and each W(x„)xW(t) is

pseudocompact (W(xn) is compact and W(t) is pseudocompact). Thus, by

Hager's theorem (see 1.11), v(W(a)x W(t))=v(W(o))xv(W(t)).\\

Corollary 3.5.    For every pair of WO TS X and Y,v(Xx Y) = vXxvY.

Proof. There are unique ordinals a and t such that X is homeo-

morphic to W(a) and Y is homeomorphic to W(t).\\

Remark 3.6. Recall that, as a consequence of Theorem 2.5, for every

nonrealcompact WOTS X, there is a paracompact LOTS Y such that

v(Xx Y)^vXxvY. If X is a realcompact WOTS with nonmeasurable

cardinal, then v(Xx Y) = vXxvY for every space F by Comfort's theorem

(see 1.10).
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